
GET READY
FOR CSS GRID

LAYOUT

RACHEL ANDREW

FOREWORD BY

ERIC MEYER

1

MORE FROM A BOOK APART BRIEFS

Pricing Design
Dan Mall

Visit abookapart.com for our full list of titles.

http://www.abookapart.com

Copyright © 2016 Rachel Andrew
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Executive Director: Katel LeDû
Editor: Caren Litherland
Technical Editor: Paul Lloyd
Copyeditor: Lisa Maria Martin
Compositor: Rob Weychert
Ebook Producer: Ron Bilodeau

ISBN: 978-1-9375572-7-0

A Book Apart
New York, New York
http://abookapart.com

10 9 8 7 6 5 4 3 2 1

http://www.abookapart.com

TABLE OF CONTENTS

	 1 	 | 	 Introduction

Chapter 1

	 3 	 |	 What Is CSS Grid Layout?

Chapter 2

	 1 9 	 |	 Laying Things Out on the Grid

Chapter 3

	 3 2 	 |	 CSS Grids and Responsive Design

Chapter 4

	 4 0 	 |	 Grid, Another Tool in Our Kit

Chapter 5

	 4 7 	 |	 What’s Next for Grid?

	 5 2 	 | 	 Resources

	 5 3 	 | 	 Acknowledgements

	 5 4 	 | 	 References

	 5 6 	 | 	 Index

FOREWORD
From the very beginning of CSS, there has been a giant, lay-
out-shaped hole at its center.

We filled it with table markup, which was never meant for
layout. After that came floats, which were also never meant
for layout; we only used them because `clear` existed, so we
could push footers to the bottom of the page. (Yes, pages used
to have bottoms. Kids, ask your parents about finite scrolling.)
For a brief period, we played with positioning, which actually
was meant for layout, but was too incompletely designed to
effectively serve that role.

And that’s where things have stood for well more than a
decade: hacking our way to layouts with floats. A useful and
often ingeniously adapted hack, but a hack nonetheless. It’s
little wonder that CSS has a bad reputation in certain quarters.
If your presentation system has to be hacked just to lay out the
basic page elements…

That time is now drawing to a close. Flexbox came first, and
is already upending what we think we know about layout. Close
behind Flexbox came Grid Layout. If you love Flexbox, there
may be no words to describe the emotions you’ll feel for Grid
Layout. Grid Layout is to Flexbox as PNG is to BMP, and then
some. It contains power we have scarcely dreamed of, let alone
dared to hope we might use.

I might be just a little excited about Grid Layout. But then,
after such a long wait, how could I not be?

As excited as I am about Grid Layout itself, though, I’m even
more excited that Rachel Andrew has written this book and that
you have it in front of you right now. This potent little tome
packs a great look at everything grids currently have to offer. And
that’s no surprise coming from Rachel, who has long been one
of the clearest and sharpest CSS educators around. This is a text
I’ll refer back to as I practice using grids. I suspect you will, too.

Grids have been a long, long time coming, but they’re finally
here. Enjoy your newfound power, and join me in thanking
Rachel for showing us how to wield it.

—Eric Meyer

1INTRODUCTION

INTRODUCTION
When I began working on the web in 1996, the only real skill a
front-end developer had to master was chopping up images into
tiny bits and reassembling them into a table to create a layout.

Netscape 4 still held a huge market share when I started
using CSS for layout. The browser’s implementation of abso-
lute positioning was so poor that when a user resized their
screen, all of the positioned elements would stack up in the
top left corner. I’ve watched CSS evolve from a simple single
specification—concerned primarily with changing text colors
and adding borders to things—to the increasingly complex
language it is today.

Along the way, I’ve witnessed browser wars and, during
my time as a Web Standards Project member, have encour-
aged browser and tool vendors alike to innovate through the
standards process. We can now see that process playing out
in many of the specifications currently wending their way
through the W3C.

One such specification, CSS Grid Layout, is the subject of
this little book. The specification debuted under this name as a
proposal by Microsoft in April 2011 (http://bkaprt.com/cgl/00-
01/). This early version of the specification appeared in Internet
Explorers 10 and 11 and has since been adopted by the W3C. The
current editors represent Google, Mozilla, and Microsoft; and,
as Level 1 of the specification nears completion, new Editor’s
Drafts are appearing apace.

In addition to the early (and now outdated) Microsoft imple-
mentation, there is an excellent and robust implementation
of most of the Level 1 specification in the Blink and Webkit
rendering engines. It’s a very different world from the one in
which I learned my craft!

I began experimenting with CSS Grid Layout as soon as
I discovered the IE10 implementation. For several years I’ve
been frustrated that layout hasn’t advanced much, despite our
ability to round corners, create drop shadows, use fonts, and
even animate things in CSS. We now have better ways to cope
with floating and positioning elements, and our browsers are
less buggy—yet the techniques we use for layout are not far

http://bkaprt.com/cgl/00-01/
http://bkaprt.com/cgl/00-01/

2 GET READY FOR CSS GRID LAYOUT

removed from the ones we used in the early days of CSS. As
soon as I started experimenting with Grid Layout, I could see its
potential. I really believe that Grid Layout is the layout method
we’ve been waiting for.

WHAT IS CSS GRID
LAYOUT?

1

4 GET READY FOR CSS GRID LAYOUT

THE CSS GRID LAYOUT MODULE is a new CSS module that
defines a two-dimensional grid layout system. Once a grid has
been established on a containing element, the children of that
element can be placed into slots on a flexible or fixed layout
grid. The grid can be redefined using media queries, rendering
the source order of the child elements unimportant. This makes
CSS Grid Layout an incredibly powerful tool—one that I’m
excited about seeing in our browsers.

Rather than talk about CSS Grid Layout (or just plain “Grid,”
as I will call it often throughout this text) in abstract terms,
I’ll demonstrate its functionality as implemented in the Blink
rendering engine for Chrome. First, activate Grid by entering
the following line in your browser address bar:

chrome://flags/#enable-experimental-web-platform-
features

Then, turn on the Enable Experimental Web Platform Features
flag and restart Chrome.

Grid will likely be released in Blink later in 2015. Although,
as I mentioned, there is an early implementation of the module
in Internet Explorers 10 and 11, the specification has moved on.
The IE implementation now differs significantly from what we
will be discussing.

WHY EXPLORE THIS EARLY-
STAGE SPECIFICATION?

It could be argued that CSS Grid Layout is too far off in terms
of good browser support for us to really take much interest in
it. But I believe it is vitally important that we, as developers
and designers, get involved early. Unless developers engage
with specifications as they move through the W3C process
and become implemented in browsers, how can we offer real
feedback to those who are doing this work? What right will we

5WHAT IS CSS GRID LAYOUT?

have to state that the result isn’t fit for our purposes if we ignore
it until the specification becomes a W3C Recommendation and
is implemented in a number of browsers?

GRID BASICS
In this first chapter, I want to use some simple examples to pro-
vide a rundown of the essential concepts of the CSS Grid Layout
Module. Grid is a very flexible module, so there are a number
of ways to use it. In the following chapters, we’ll look at some
more “real-world” examples, building on what I describe here.

Defining a grid

A grid is defined using a new value of the display property,
display: grid.

In my HTML markup, I want to create a grid on the wrapper
and position the child elements on that grid.

<div class="wrapper">
 <div class="box a">A</div>
 <div class="box b">B</div>
 <div class="box c">C</div>
 <div class="box d">D</div>
 <div class="box e">E</div>
 <div class="box f">F</div>
</div>

In my CSS, I start by declaring a grid on the element with a
class of .wrapper:

.wrapper {
 display: grid;
}

Next, I need to describe what the grid looks like. Grids have
rows and columns, which the CSS Grid Layout Module gives
us new properties to describe:

6 GET READY FOR CSS GRID LAYOUT

grid-template-rows
grid-template-columns

 .wrapper {
 display: grid;
 grid-template-columns: 100px 10px 100px 10px »

 100px;
 grid-template-rows: auto 10px auto;
}

Here I have created a grid with three 100-pixel-wide columns
separated by 10-pixel gutter columns. There are three rows
specified, two set to auto, so they will expand to hold whatever
amount of content is put inside them. They are separated by a
10-pixel gutter row.

If you take a look at your page after you’ve declared a grid,
you’ll find that the child elements have made an attempt to place
themselves on the grid (FIG 1.1). They do this according to the
grid’s auto-placement rules, which simply fill each cell in turn,
so that children have been placed in the gutter columns. Obvi-
ously, this is not ideal!

We can sort this out by deliberately positioning our items on
the new grid. The simplest way to do that is to use line-based
placement. I can use the following rules to place an element
whose class is .a into the first cell of the grid.

.a {
 grid-column-start: 1;
 grid-column-end: 2;
 grid-row-start: 1;
 grid-row-end: 2;
}

Code example: http://bkaprt.com/cgl/01-01/

This, and all of the examples in this book, can be found on
GitHub (http://bkaprt.com/cgl/01-02/). I’ll reference the file
below each example.

FIG 1.1: The browser will display child elements of a grid according to the grid’s auto-
placement rules. In general, however, you will want to position the items yourself.

http://bkaprt.com/cgl/01-01/
http://bkaprt.com/cgl/01-02/

7WHAT IS CSS GRID LAYOUT?

We can also express this in shorthand by using the
grid-column and grid-row properties, in which the first value
represents the column or row start and the second value rep-
resents the column or row end.

.a {
 grid-column: 1 / 2;
 grid-row: 1 / 2;
}

Code example: http://bkaprt.com/cgl/01-03/

We can use an even shorter shorthand with the grid-area
property. Here the order of values is:

grid-row-start
grid-column-start
grid-row-end
grid-column-end

grid-template-rows
grid-template-columns

 .wrapper {
 display: grid;
 grid-template-columns: 100px 10px 100px 10px »

 100px;
 grid-template-rows: auto 10px auto;
}

Here I have created a grid with three 100-pixel-wide columns
separated by 10-pixel gutter columns. There are three rows
specified, two set to auto, so they will expand to hold whatever
amount of content is put inside them. They are separated by a
10-pixel gutter row.

If you take a look at your page after you’ve declared a grid,
you’ll find that the child elements have made an attempt to place
themselves on the grid (FIG 1.1). They do this according to the
grid’s auto-placement rules, which simply fill each cell in turn,
so that children have been placed in the gutter columns. Obvi-
ously, this is not ideal!

We can sort this out by deliberately positioning our items on
the new grid. The simplest way to do that is to use line-based
placement. I can use the following rules to place an element
whose class is .a into the first cell of the grid.

.a {
 grid-column-start: 1;
 grid-column-end: 2;
 grid-row-start: 1;
 grid-row-end: 2;
}

Code example: http://bkaprt.com/cgl/01-01/

This, and all of the examples in this book, can be found on
GitHub (http://bkaprt.com/cgl/01-02/). I’ll reference the file
below each example.

FIG 1.1: The browser will display child elements of a grid according to the grid’s auto-
placement rules. In general, however, you will want to position the items yourself.

http://bkaprt.com/cgl/01-03/
http://bkaprt.com/cgl/01-01/
http://bkaprt.com/cgl/01-02/

8 GET READY FOR CSS GRID LAYOUT

This gives us:

.a {
 grid-area: 1 / 1 / 2 / 2;
}

Code example: http://bkaprt.com/cgl/01-04/

Personally, I find the shorter shorthand a little difficult to read.
For clarity, I prefer the grid-column and grid-row shorthand.

By drawing a box around the area we want our content to
go into, line-based placement creates a grid area. The grid we
defined on our wrapper creates six 100-pixel-wide grid cells,
and I can place the child elements into them using the following
rules. This will appear in the browser as a set of boxes with
gutters between them (FIG 1.2).

.a {
 grid-column: 1 / 2;
 grid-row: 1 / 2;
}

.b {
 grid-column: 3 / 4;
 grid-row: 1 / 2;
}

.c {
 grid-column: 5 / 6;
 grid-row: 1 / 2;
}

.d {
 grid-column: 1 / 2;
 grid-row: 3 / 4;
}

http://bkaprt.com/cgl/01-04/

9WHAT IS CSS GRID LAYOUT?

.e {
 grid-column: 3 / 4;
 grid-row: 3 / 4;
}

.f {
 grid-column: 5 / 6;
 grid-row: 3 / 4;
}

Code example: http://bkaprt.com/cgl/01-03/

A grid area can span as many individual grid cells as required.
You just need to specify the line where the content will start
and the line where it will end.

Now, I’ll use the same declared grid, but will only place four
child elements onto it (FIG 1.3).

.a {
 grid-column: 1 / 4;
 grid-row: 1 / 2;
}

.b {
 grid-column: 5 / 6;
 grid-row: 1 / 4;
}

.c {
 grid-column: 1 / 2;
 grid-row: 3 / 4;
}

.d {
 grid-column: 3 / 4;
 grid-row: 3 / 4;
}

Code example: http://bkaprt.com/cgl/01-05/

http://bkaprt.com/cgl/01-03/
http://bkaprt.com/cgl/01-05/

10 GET READY FOR CSS GRID LAYOUT

Note that the source order of these child elements doesn’t
matter. With Grid, you can order your source in whatever way
makes sense for the document, and then display it in whatever
way makes sense visually for any viewport size.

FIG 1.2: A simple layout of equally sized boxes placed onto a grid.

FIG 1.3: Spanning with line-based placement.

11WHAT IS CSS GRID LAYOUT?

Note that the source order of these child elements doesn’t
matter. With Grid, you can order your source in whatever way
makes sense for the document, and then display it in whatever
way makes sense visually for any viewport size.

GRID TERMINOLOGY
Before going any further, let’s take a few moments to understand
some of the terminology used when talking about Grid Layout.

Grid lines

Grid lines make up the grid and can be horizontal or vertical.
They can be referred to by number, as I have done so far, but
they can also be named.

Grid track

A grid track is the space between two grid lines. It can be either
horizontal or vertical.

In the examples shown in FIGs 1.1–1.3, we have grid tracks
representing content cells and grid tracks representing gutters.
As far as the grid is concerned, these are the same thing. So
when positioning using numbered lines, remember that the
gutter lines exist and be sure to include them when working
out where content starts and ends.

Grid cell

A grid cell—the space between four grid lines—is the smallest
possible unit on the grid. Conceptually, it is just like a table cell.

Grid area

A grid area is any area of the grid bound by four grid lines. It
can contain a number of grid cells.

FIG 1.2: A simple layout of equally sized boxes placed onto a grid.

FIG 1.3: Spanning with line-based placement.

12 GET READY FOR CSS GRID LAYOUT

Grid gutters

The examples in this little book all achieve gutters by way of a
grid track that serves as a gutter between tracks used for con-
tent. This is a valid approach, and is, in fact, necessary if you
want to create a complex grid using different gutter widths.

As I was preparing this book, a grid-column-gap property
was added to the Level 1 specification. This property behaves
much like column-gap in multiple-column layouts. Also, for
Grid we have grid-row-gap to create spacing between rows.
These properties have a shorthand of grid-gap, which allows
you to specify both row and column gaps at once.

Because grid-column-gap and grid-row-gap were not
implemented in any browser at the time of writing—making it
into Chrome Canary at the final moment—I have omitted them
from my examples. For simple grids, these properties will serve
to reduce the amount of CSS required.

FIG 1.4: The highlighted grid line is column
line 2.

FIG 1.5: I have highlighted the track
between row lines 2 and 3.

FIG 1.6: The highlighted grid cell in this
image is between row lines 2 and 3 and
column lines 2 and 3.

FIG 1.7: The highlighted grid area in this
image is between row lines 1 and 3 and
column lines 2 and 4.

13WHAT IS CSS GRID LAYOUT?

Grid gutters

The examples in this little book all achieve gutters by way of a
grid track that serves as a gutter between tracks used for con-
tent. This is a valid approach, and is, in fact, necessary if you
want to create a complex grid using different gutter widths.

As I was preparing this book, a grid-column-gap property
was added to the Level 1 specification. This property behaves
much like column-gap in multiple-column layouts. Also, for
Grid we have grid-row-gap to create spacing between rows.
These properties have a shorthand of grid-gap, which allows
you to specify both row and column gaps at once.

Because grid-column-gap and grid-row-gap were not
implemented in any browser at the time of writing—making it
into Chrome Canary at the final moment—I have omitted them
from my examples. For simple grids, these properties will serve
to reduce the amount of CSS required.

LINE-BASED PLACEMENT
AND THE SPAN KEYWORD

As I have shown, we don’t need to use any kind of spanning
properties to create a grid area spanning multiple grid lines. But
the Grid Layout Module does include a span keyword, which
can be used instead of specifying the end line explicitly.

The example shown in FIG 1.3 could also be written like this:

.a {
 grid-column: 1 / span 3;
 grid-row: 1;
}

.b {
 grid-column: 5;
 grid-row: 1 / span 3;
}

FIG 1.4: The highlighted grid line is column
line 2.

FIG 1.5: I have highlighted the track
between row lines 2 and 3.

FIG 1.6: The highlighted grid cell in this
image is between row lines 2 and 3 and
column lines 2 and 3.

FIG 1.7: The highlighted grid area in this
image is between row lines 1 and 3 and
column lines 2 and 4.

14 GET READY FOR CSS GRID LAYOUT

.c {
 grid-column: 1;
 grid-row: 3;
}

.d {
 grid-column: 3;
 grid-row: 3;
}

Two new things show up here. The first is the span keyword;
instead of positioning the div with a class of .a by saying, “Start
at column line 1 and end at column line 4,” I say, “Start at column
line 1 and span 3 column lines.” The result is the same.

I have also omitted the row or column end value where the
content only spans to the next line because that is the default—
no need to specify it.

LINE-BASED PLACEMENT
WITH NAMED LINES

Keeping track of all of these line numbers soon gets old. Luckily,
the Grid Layout Module provides a way to name lines, making
it far easier to remember what goes where on the grid.

Let’s continue with our example layout. When defining our
grid, we can assign names to the lines, like so:

.wrapper {
 display: grid;
 grid-template-columns: [col1-start] 100px »

 [col1-end] 10px [col2-start] 100px [col2-end] »
 10px [col3-start] 100px [col3-end];

 grid-template-rows: [row1-start] auto [row1-end] »
 10px [row2-start] auto [row2-end];

}

15WHAT IS CSS GRID LAYOUT?

Remember: we are naming grid lines, not tracks. In the value
for grid-template-columns above, we name our first line
col1-start. After that comes the 100-pixel track size. We name
the line before the gutter col1-end, and then define the gutter
track size of 10 pixels.
We can then position our items using those names, instead
of numbers.

.a {
 grid-column: col1-start / col2-end;
 grid-row: row1-start;
}

.b {
 grid-column: col3-start;
 grid-row: row1-start / row2-end;
}

.c {
 grid-column: col1-start;
 grid-row: row2-start;
}

.d {
 grid-column: col2-start;
 grid-row: row2-start;
}

We will return to these named lines later in the book, when
we look at a more complex use case. The nice thing about
naming lines this way, though, is that once you’ve defined a
grid, you can quickly arrange things without needing to think
about their numerical position. For example, you can define
sidebar-start and sidebar-end and know that any element
positioned there will sit in the sidebar area.

16 GET READY FOR CSS GRID LAYOUT

GRID TEMPLATE AREAS
The final method of creating and positioning items on the grid
is to use grid template areas. It’s usually when I show people this
method that they start to get almost as excited about Grid as
I am. Here we create named grid areas, and then use the new
property grid-template-areas to describe where on the grid
these named areas sit.

This is my HTML: a small layout with a header, a sidebar, a
content area, and a footer.

<div class="wrapper">
 <div class="box header">Header</div>
 <div class="box sidebar">Sidebar</div>
 <div class="box content">Content</div>
 <div class="box footer">Footer</div>	
</div>

In my CSS, I have rules set up for each of the areas; I use
the grid-area property to give them a name to refer to when
defining the layout on the grid.

FIG 1.8: A simple layout using grid-template-areas.

17WHAT IS CSS GRID LAYOUT?

.sidebar { grid-area: sidebar; }

.content { grid-area: content; }

.header { grid-area: header; }

.footer { grid-area: footer; }

I now just need to declare my grid on the wrapper as before,
but this time I also use grid-template-areas to define the
layout using a kind of ASCII-art syntax.

.wrapper {
 display: grid;
 grid-template-columns: 200px 10px 200px 10px »

 200px;
 grid-template-rows: auto;
 grid-template-areas:
 "header header header header header"
 "sidebar . content content content"
 "footer footer footer footer footer"
}

Code example: http://bkaprt.com/cgl/01-06/

Repeating the name of an area causes the content to span
those cells; one or more sequential period characters means
that the cell remains empty. That’s all you need to do to lay out
a page using the CSS Grid Layout Module.

No clearing is required. I can add as much or as little content
as I like into either the sidebar or the content area; the footer
will always stay below both columns. The columns will also be
the same height. No strange hacks required!

You do not have to add any non-semantic class names to
your document; you can simply position the elements using
the classes already applied to describe the content.

As I’ve suggested, Grid frees up source order, allowing us
to organize our content in the most accessible and semantic
way. Grid truly allows us to separate document structure from
presentation. This means that we can easily redefine the layout
in our media queries, and thus can create dramatically different

http://bkaprt.com/cgl/01-06/

18 GET READY FOR CSS GRID LAYOUT

layouts for any viewport or particular use without compromis-
ing the document’s structure.

And that’s why I love the CSS Grid Layout Module. Read
on to see more examples and discover what else you can do
with the grid.

2

LAYING THINGS OUT
ON THE GRID

2

20 GET READY FOR CSS GRID LAYOUT

NOW THAT WE’VE covered some of the basics of Grid, let’s take
a look at some common layouts and see how we might achieve
them using this new method.

A THREE-COLUMN LAYOUT USING
GRID-TEMPLATE-AREAS

To start, let’s create a simple three-column layout.
Our HTML has the layout nested inside a wrapper div and

includes a header; an article with a heading, a div, and an
aside nested inside; an aside; and then a footer.

<div class="wrapper">
 <header class="mainheader">
 <h1>Excerpts from the book The Bristol Royal

Mail</h1>
 </header>

 <article class="content">
 <h1>Post letter boxes: position, violation,

 peculiar uses</h1>
 <div class="primary">
 <p>. . .</p>
 </div>
 <aside>
 <p>. . .</p>
 </aside>
 </article>

 <aside class="sidebar">

 </aside>

 <footer class="mainfooter">
 <p>. . .</p>
 </footer>
</div>

21LAYING THINGS OUT ON THE GRID

If we take a look at this in the browser, we can see the con-
tent displayed in document source order, since no positioning
has yet been applied (FIG 2.2).

I want to use grid-template-areas to position my content
in this example, so the first step is to define the main areas using
the selectors that identify them.

.mainheader { grid-area: header; }

.content { grid-area: content; }

.sidebar { grid-area: sidebar; }

.mainfooter { grid-area: footer; }

I then create a grid on the div with a class of .wrapper.
My grid has three columns: a 9-fraction-unit column, a
40-pixel gutter, and a 3-fraction-unit column. Because I’ve set

FIG 2.1: A simple three-column layout.

22 GET READY FOR CSS GRID LAYOUT

grid-template-rows to auto, we’ll get as many rows as we
need to accommodate our content.

Finally, I def ine the layout as the value of the
grid-template-areas property. I repeat the header across
all three columns of the first row. In the second row, I put the
content in the left column and the sidebar on the right. The
footer makes up the final row.

.wrapper {
 display: grid;
 width: 90%;
 margin: 0 auto 0 auto;
 grid-template-columns: 9fr 40px 3fr;
 grid-template-rows: auto;
 grid-template-areas:
 "header header header"

FIG 2.2: The layout before any positioning is added.

23LAYING THINGS OUT ON THE GRID

 "content . sidebar"
 "footer footer footer";
 }

We now have a layout taking shape (FIG 2.3), all with just
a few lines of CSS. That footer will stay put no matter which
column is the longest. The background color on the sidebar
extends right down to the footer.

Inside our article we have a heading, a div containing the
primary content, and an aside. I’m going to also use Grid to
position these, as it lets us create nested grids. I’ll set up the grid
areas of these nested items just as I did the main items.

.content .primary { grid-area: article-primary; }

.content aside { grid-area: article-secondary; }

.content > h1 { grid-area: chapterhead; }

FIG 2.3: The layout after positioning the main content areas.

24 GET READY FOR CSS GRID LAYOUT

I then create a new grid on .content and lay out our ele-
ments with the heading in the top left column, the primary
content below it, and the aside to the right.

.content {
 display: grid;
 grid-template-columns: 9fr 40px 3fr;
 grid-template-rows: auto;
 grid-template-areas:
 "chapterhead . ."
 "article-primary . article-secondary";
 }

Code example: http://bkaprt.com/cgl/02-01/

That’s all there is to it. We now have the layout shown at the
beginning of this chapter (FIG 2.1).

Nested grids and subgrids

Our nested grid in this example is completely independent of
the main grid. The container .content is positioned by the
main grid, but the child elements are not—they acquire their
grid from the way we set up .content.

This means we can’t inherit column widths from the parent,
which is a problem if you want to use flexible length units:
you’ll find it tricky to get the elements in the nested grid to line
up with those in the outer grid.

The specification has a solution for this: the subgrid key-
word. If we were to use subgrid, we would use it as a value
for the grid property:

.content {
 grid: subgrid;
}

This comes in handy particularly when basing our layout
on grid systems such as the twelve-column and sixteen-column
grids that are currently popular. In most cases, you’ll want the

http://bkaprt.com/cgl/02-01/

25LAYING THINGS OUT ON THE GRID

children of nested elements to use the lines of the outer grid
rather than implement their own grid.

At the time of writing, however, it looks as if the subgrid
keyword will be moved to Level 2 of the specification, and there
is currently no browser implementation of this functionality.
My concern is that if this doesn’t make it into the specification,
authors will flatten their markup structure, removing semantic
markup, in order to use Grid.

A boxy layout with line-based placement

Placement using template areas is straightforward and makes
it very easy to position items into known page containers. To
do more complex things, however—for example, to work with
multiple-column grid systems—then line-based placement is
the tool to use. My next example is an image layout, which could
easily be a set of containers with content of any type (FIG 2.4).

The HTML for this example is very simple: a div with a class
of .wrapper containing a header and our images.

<div class="wrapper">
 <header>
 <h1>Little boxes layout</h1>
 </header>

 <img src="images/balloon1.jpg" alt="Bristol

Balloon Fiesta" class="box1">
 <img src="images/balloon2.jpg" alt="Bristol

Balloon Fiesta" class="box2">
 <img src="images/balloon3.jpg" alt="Bristol

Balloon Fiesta" class="box3">
 <img src="images/balloon4.jpg" alt="Bristol

Balloon Fiesta" class="box4">
 <img src="images/balloon5.jpg" alt="Bristol

Balloon Fiesta" class="box5">
 <img src="images/balloon6.jpg" alt="Bristol

Balloon Fiesta" class="box6">
 <img src="images/balloon7.jpg" alt="Bristol

Balloon Fiesta" class="box7">

26 GET READY FOR CSS GRID LAYOUT

 <img src="images/balloon8.jpg" alt="Bristol
Balloon Fiesta" class="box8">

</div>

I declare a grid on the .wrapper element using the named
grid lines syntax. I’m creating a grid containing thirteen column
tracks, with a gutter track before each one. For the rows, I start
with a row whose height value is auto for my heading. I then add
fourteen row tracks, again with a 10-pixel gutter before each one.

.wrapper {
 display: grid;
 grid-template-columns:
 repeat(13, [gutter] 10px [col] 1fr);
 grid-template-rows:
 [row] auto repeat(14, [gutter] 10px [row] 60px);
}

FIG 2.4: The completed boxy layout.

27LAYING THINGS OUT ON THE GRID

The repeat keyword

Note that I used the repeat keyword when setting up this
example. This simply saves me from having to write out my
gutter and col pattern thirteen times. Between parentheses,
I have the number of times that I want the pattern to repeat,
followed by the pattern name.

The specification has recently been updated to allow the
number of repeats to be auto. This means that a pattern can
repeat as many times as the content requires. At the time of
writing, this is not implemented in any browser. If it were, then
our row pattern could be written as follows:

grid-template-rows:
 [row] auto repeat(auto, [gutter] 10px [row] »

 60px);

Positioning the boxes

With a grid defined, I can start to position the boxes. The header
is going into the first row and will stretch across the layout.

header {
 grid-column: col / span gutter 12;
 grid-row: 1 / 1;
}

Using the named lines, we start at the first line named col,
then span to gutter line 12.

I can place the individual images arbitrarily; as we know by
now, Grid doesn’t care about source order. The hardest thing
about placing the elements is working out which line to place
them on; browser tools for Grid would really help with this.
It’s not that difficult, though—it’s just a matter of starting on
the col and row line number you want the element to start on
and spanning the required number of gutters.

28 GET READY FOR CSS GRID LAYOUT

.box1 {
 grid-column: col 1 / span gutter 4;
 grid-row: row 2 / span gutter 2;
}
.box2 {
 grid-column: col 1 / span gutter 9;
 grid-row: row 7 / span gutter 4;
}
.box3 {
 grid-column: col 1 / span gutter 12;
 grid-row: row 11 / span gutter 3;
}
.box4 {
 grid-column: col 10 / span gutter 3;
 grid-row: row 2 / span gutter 3;
}
.box5 {
 grid-column: col 5 / span gutter 5;
 grid-row: row 2 / span gutter 5;
}
.box6 {
 grid-column: col 1 / span gutter 4;
 grid-row: row 4 / span gutter 3;
}
.box7 {
 grid-column: col 10 / span gutter 3;
 grid-row: row 5 / span gutter 4;
}
.box8 {
 grid-column: col 10 / span gutter 3;
 grid-row: row 9 / span gutter 2;
}

Code example: http://bkaprt.com/cgl/02-02/

We now have the boxy grid layout. You can switch elements
around by swapping their class or defining their grid position
in the CSS without worrying about source order.

http://bkaprt.com/cgl/02-02/

29LAYING THINGS OUT ON THE GRID

Layering items on the grid

If you are as old as I am, you may remember the days of using
tables for layout. Grid is conceptually like using a table, but with
a key difference: the table is not defined as a semantic table, but
is defined in CSS. This means that it can be redefined, as we will
see when we look at using Grid in responsive layouts.

Another important difference when using Grid Layout over
table layout is that elements on the grid can overlap. If a grid
area overlaps another grid area, you use z-index to control
which element displays on top—just like with positioned ele-
ments. We can see how this works, and also demonstrate rede-
fining an area, by adding a hover effect to our boxy layout.

First, I’ll define a shadow and a z-index on img:hover to
make sure that any image being hovered over will be displayed
on top of the stack and also have a shadow.

img:hover {
 z-index: 10;
 box-shadow: 10px 10px 20px 0px rgba(0,0,0,0.75);
}

You should see the shadow when hovering over an image.
I’m going to redefine the grid of each item on hover so the
image grows and overlaps the neighboring images. For .box1,
I will have two declarations: the first for the default state, the
second for growing the box into the top and left gutters and
spanning an additional gutter to the right and below.

.box1 {
 grid-column: col 1 / span gutter 4;
 grid-row: row 2 / span gutter 2;
}

.box1:hover {
 grid-column: gutter 1 / span gutter 5;
 grid-row: gutter 1 / span gutter 3;
}

30 GET READY FOR CSS GRID LAYOUT

I also need to increase the value for the number of repeats
of my column pattern by 1 to 14, to allow the final item to have
somewhere to grow.

grid-template-columns:
 repeat(14, (gutter) 10px (col) 1fr);

When I hover over the image, it now pops out and overlays
its neighbors (FIG 2.5). You can do the same for the other images.

Code example: http://bkaprt.com/cgl/02-03/

You could, of course, create much nicer effects using anima-
tion to change the display of items on your grid. This probably

FIG 2.5: Redefining the grid on hover, showing how items can overlay one another.

http://bkaprt.com/cgl/02-03/

31LAYING THINGS OUT ON THE GRID

isn’t an effect you’d use directly in production, but it demon-
strates how you can change and layer items with Grid.

So far, we’ve gone over the two main ways of using the CSS
Grid Layout Module, and have talked about some of the finer
points and unimplemented elements of the specification. Next,
we’ll see how the Module will make it easier for us to control
our layouts at multiple breakpoints.

CSS GRIDS AND
RESPONSIVE DESIGN

3

33CSS GRIDS AND RESPONSIVE DESIGN

IF YOU’VE MADE IT THIS FAR, you probably already have some
idea of how useful CSS Grid Layout will be when working with
responsive layouts. Proper separation of document source
from presentation is something we have aimed for since the
early days of CSS. Whenever I’ve been involved in developing
a responsive design, though, I’ve always had to make compro-
mises between source order and getting the most desirable
layouts for each breakpoint. Grid, along with Flexbox, makes
this far more straightforward.

To see how, let’s look at some of the things we created in
the last chapter, starting with the three-column layout using
grid-template-areas (FIG 2.1).

Redefining grid-template-areas with media queries

Once again, I start by setting up all of my grid areas, for both
the main grid and the nested grid on the article, with a class
called .content.

.mainheader { grid-area: header; }

.content { grid-area: content; }

.sidebar { grid-area: sidebar; }

.mainfooter { grid-area: footer; }

.content .primary { grid-area: article-primary; }

.content aside { grid-area: article-secondary; }

.content > h1 { grid-area: chapterhead; }

At a breakpoint of 460 pixels, I start laying this out as a grid. For
the main grid, I place the sidebar—which contains an image and
is positioned last in the source—between the header and content.

I also declare a grid on .content, pulling the aside (defined
as article-secondary) between the chapterhead and
article-primary content (FIG 3.1).

@media only screen and (min-width: 460px) {
 .wrapper {
 display: grid;
 width: 90%;
 margin: 0 auto 0 auto;

34 GET READY FOR CSS GRID LAYOUT

 grid-template-columns: auto;
 grid-template-rows: auto;
 grid-template-areas:
 "header"
 "sidebar"
 "content"
 "footer";
 }
 .content {
 display: grid;
 grid-template-columns: auto;
 grid-template-rows: auto;
 grid-template-areas:
 "chapterhead"
 "article-secondary"
 "article-primary";
 }
 article aside { font-size: .75rem;}
}

FIG 3.1: The layout at 460 pixels.

35CSS GRIDS AND RESPONSIVE DESIGN

Once we hit the 700-pixel breakpoint, we can go to two col-
umns by redefining the grid on .wrapper. At this breakpoint,
I’m going to leave the inner grid alone; three columns would
be a little cramped.

@media only screen and (min-width: 700px) {
 .wrapper {
 grid-template-columns: 9fr 40px 3fr;
 grid-template-rows: auto;
 grid-template-areas:
 "header header header"
 "content . sidebar"
 "footer footer footer";
 }
}

Finally, I redefine the inner grid at 980 pixels, returning to
the three-column layout I created in the last chapter.

@media only screen and (min-width: 980px) {
 .content {
 display: grid;
 grid-template-columns: 9fr 40px 3fr;
 grid-template-rows: auto;
 grid-template-areas:
 "chapterhead . ."
 "article-primary . article-secondary";
 }
 article aside { font-size: 100%;}
}

Code example: http://bkaprt.com/cgl/03-01/

Redefining the grid when using grid-template-areas is
incredibly straightforward. It makes it much easier to tweak
the layout at multiple breakpoints, allowing the content to
determine what works best.

http://bkaprt.com/cgl/03-01/

36 GET READY FOR CSS GRID LAYOUT

Redefining line-based placement

The second example we created in Chapter 2 was an image
layout. A fair amount of screen real estate is necessary to view
the layout in that format. We can add some media queries to
adjust the layout to suit the viewport.

I’ve decided that unless the screen is wider than 720 pixels,
I’ll just allow the images to display one after the other; I’ve
added a bottom margin to separate them. At 720 pixels, the fun
starts. I’m going to define my multiple-column grid as before.
Instead of the layout of differently sized boxes used for wider
viewports, I’m just going to go for a two-column layout here.
The top four boxes are the same height, spanning two gutters.
I’ll stagger the bottom images, making some span four gutters
and others span two gutters.

FIG 3.2: At two columns as we reach the 700-pixel breakpoint.

37CSS GRIDS AND RESPONSIVE DESIGN

@media only screen and (min-width: 720px) {
 .wrapper {
 display: grid;
 grid-template-columns:
 repeat(13, [gutter] 10px [col] 1fr);
 grid-template-rows:
 [row] auto repeat(13, [gutter] 10px [row] »

 60px);
 }
 header {
 grid-column: col / span gutter 12;
 grid-row: 1 / 1;
 }
 img {
 margin: 0;
 }
 .box1 {
 grid-column: col 1 / span gutter 6;
 grid-row: row 2 / span gutter 2;
 }
 .box2 {
 grid-column: col 7 / span gutter 6;
 grid-row: row 2 / span gutter 2;
 }
 .box3 {
 grid-column: col 1 / span gutter 6;
 grid-row: row 4 / span gutter 2;
 }
 .box4 {
 grid-column: col 7 / span gutter 6;
 grid-row: row 4 / span gutter 2;
 }
 .box5 {
 grid-column: col 1 / span gutter 6;
 grid-row: row 6 / span gutter 4;
 }

38 GET READY FOR CSS GRID LAYOUT

 .box6 {
 grid-column: col 7 / span gutter 6;
 grid-row: row 6 / span gutter 2;
 }
 .box7 {
 grid-column: col 1 / span gutter 6;
 grid-row: row 10 / span gutter 2;
 }

FIG 3.3: The two-column boxy layout.

39CSS GRIDS AND RESPONSIVE DESIGN

 .box8 {
 grid-column: col 7 / span gutter 6;
 grid-row: row 8 / span gutter 4;
 }
}

Code example: http://bkaprt.com/cgl/03-02/

Let’s return to my original layout at the 1200-pixel break-
point. Note that I don’t need to redefine my grid, just where
elements sit on it. Because the grid is flexible, the tracks are
wider or narrower depending on available viewport width.

Of course, you could also redefine your grid for different
breakpoints, or use any combination of these methods in one
layout. It’s such a flexible tool!

Before we get too sad that we can’t use this in production yet,
it’s worth noting that this is a fantastic way to prototype layouts
because it makes it so easy to redefine areas. Even if you have
to go back and rebuild your grid with some other method, you
can use the Grid Layout Module and a supporting browser just
to test out what works well for your content.

http://bkaprt.com/cgl/03-02/

GRID, ANOTHER TOOL
IN OUR KIT

4

41GRID, ANOTHER TOOL IN OUR KIT

THE CSS GRID LAYOUT MODULE will ultimately work alongside
other layout methods to bring CSS layout up to date. Together
with the Flexible Box Layout Module (Flexbox) and media
queries, Grid Layout can help us build the types of sites and
layouts we need to build today.

People new to Grid Layout commonly wonder how Grid
works with Flexbox. When should we choose to use one or
the other (in an ideal world where both have support)? On the
www-style mailing list, Tab Atkins gave an excellent answer to
this question:

Flexbox is for one-dimensional layouts—anything that needs to
be laid out in a straight line (or in a broken line, which would be
a single straight line if they were joined back together).

Grid is for two-dimensional layouts. It can be used as a
low-powered flexbox substitute (we’re trying to make sure that
a single-column/row grid acts very similar to a flexbox), but
that’s not using its full power.

Flexbox is appropriate for many layouts, and a lot of “page
component” elements, as most of them are fundamentally
linear. Grid is appropriate for overall page layout, and for com-
plicated page components which aren't linear in their design.

The two can be composed arbitrarily, so once they're both
widely supported, I believe most pages will be composed of an
outer grid for the overall layout, a mix of nested flexboxes and
grid for the components of the page, and finally block/inline/
table layout at the “leaves” of the page, where the text and
content live.

—Tab Atkins, May 6, 2013 (http://bkaprt.com/cgl/04-01/)

We can take a look at how this might work by creating the
layout shown in FIG 4.1. It’s a fairly standard layout: navigation,
followed by a large feature image and a main article, then a
set of boxes featuring content of different heights, and, finally,
a footer.

The HTML for the body of my page looks like this:

http://bkaprt.com/cgl/04-01/

42 GET READY FOR CSS GRID LAYOUT

<div class="wrapper">
 <header class="mainheader">
 <nav>

 Balloons
 More balloons
 Even more balloons

 </nav>
 </header>

 <aside class="feature-pull"><img src="images/
 balloon5.jpg" alt="Bristol Balloon Fiesta">
</aside>

FIG 4.1: A layout combining Grid Layout with other methods.

43GRID, ANOTHER TOOL IN OUR KIT

 <article class="feature">
 <h1>Bristol Balloon Fiesta</h1>
 <p>…</p>

 <ul class="cta-list">
 <li class="box">
 <li class="box">

 </article>

 <ul class="gallery">
 <li class="box"><img src="images/balloon1.jpg"

alt="Inflating balloons">
 <p>Hot air balloons being inflated</p>
 <li class="box">
 <li class="box">
 <li class="box">	

 <footer class="mainfooter box"></footer>
</div>

I’ve added a class called .box to the elements to give them a
basic box style so we can clearly see the layout; I’ve also written
some CSS for basic styling. This gives us the linearized view
shown in FIG 4.2.

At a 460-pixel breakpoint, I start using Grid Layout to posi-
tion the main content areas on the page. Inside the media query,
I set up those main areas and then create a linearized layout to
arrange them in the order I want.

@media only screen and (min-width: 460px) {

 .mainheader { grid-area: header; margin: 0 0 »
 20px 0;}
 .feature-pull { grid-area: featurepull; }
 .feature { grid-area: feature; }
 .gallery { grid-area: secondary; }
 .mainfooter { grid-area: footer; }

44 GET READY FOR CSS GRID LAYOUT

 .wrapper {
 display: grid;
 width: 90%;
 margin: 0 auto 0 auto;
 grid-template-columns: auto;
 grid-template-rows: auto;
 grid-template-areas:
 "header"
 "feature"
 "featurepull"
 "secondary"
 "footer";
 }
}

At 760 pixels, I move to a two-column layout with a gut-
ter. This allows me to place the feature image to the left of
the article.

FIG 4.2: The layout prior to adding CSS to
position elements.

45GRID, ANOTHER TOOL IN OUR KIT

@media only screen and (min-width: 760px) {
 .wrapper {
 grid-template-columns: 48% 4% 48%;
 grid-template-rows: auto;
 grid-template-areas:
 "header header header"
 "featurepull . feature"
 "secondary secondary secondary"
 "footer footer footer";
}

FIG 4.3 shows a number of elements on the page that haven’t
yet been laid out to match the initial design (FIG 4.1). The nav-
igation runs right across the page, the small images need to be
formatted into a row of four, and two calls to action that should
be side by side are stacked under the main content.

It would be possible to achieve this with Grid, but Flexbox is
probably a better fit for such small interface elements. Flexbox
has the ability to wrap rows, plus other features that are useful
when dealing with the smaller parts of a user interface.

Inside the media query for the first breakpoint, I set the
.mainheader ul and .gallery selectors to display: flex. I
add to that at the second breakpoint by turning the wrapper for
the two call-to-action boxes (.cta-list) into a Flex container.

My simple layout is now complete and resembles what is
displayed in FIG 4.1.

Code example: http://bkaprt.com/cgl/04-02/
& http://bkaprt.com/cgl/04-03/

One thing I appreciate about using Grid and Flexbox like
this is how infrequently we need to add wrapper divs purely to
create the layout. Most of the existing layout methods currently
require redundant markup. It’s nice to know I’m not adding
bulk to my pages just for CSS purposes.

The method outlined in this chapter provides insight into
how we will be working with CSS layout in the not-so-distant
future. In my final chapter, I’ll talk about that future and how
we can welcome it.

http://bkaprt.com/cgl/04-02/
http://bkaprt.com/cgl/04-03/

46 GET READY FOR CSS GRID LAYOUT

FIG 4.3: The layout after positioning the main page areas.

WHAT’S NEXT
FOR GRID?

5

48 GET READY FOR CSS GRID LAYOUT

I HOPE that this book has given you a good introduction to
CSS Grid Layout and encouraged you to explore further. In
this concluding chapter, I’ll summarize the current state of
browser implementations and offer some thoughts about why
it is worth exploring the specification even if we can’t yet use
it in production.

CSS GRID LAYOUT IN BROWSERS
As I write this book, all signs suggest that 2015 will be the year
of CSS Grid Layout. By the end of this year, we very well may
see an implementation of Grid in all major browsers; I’ll keep
an up-to-date list of browser support information at Grid by
Example (http://bkaprt.com/cgl/05-01/).

Blink

All of the examples in this book work right now unprefixed
in Chrome with the Experimental Web Platform Features flag
enabled. Chrome, along with Opera and other browsers, uses
the Blink rendering engine. The Blink implementation work is
being sponsored by Bloomberg and carried out by open source
consultancy Igalia (http://bkaprt.com/cgl/05-02/).

Igalia plans to send the “Intent to Ship” to the Blink mailing
list this year (http://bkaprt.com/cgl/05-03/). Once Grid is out
from behind a flag, there will be greater potential to use it
for applications, especially those designed for mobile (where
Chrome is the majority browser).

Webkit

Along with the Blink implementation, Igalia has also been
working on the one for Webkit. It’s currently available in
Webkit Nightly Builds (http://bkaprt.com/cgl/05-04/), with
the –webkit prefix. I hope this means that we will see Grid in
Safari in the future.

http://bkaprt.com/cgl/05-01/
http://bkaprt.com/cgl/05-02/
http://bkaprt.com/cgl/05-03/
http://bkaprt.com/cgl/05-04/

49WHAT ’S NEXT FOR GRID?

Mozilla

Mozilla announced an “Intent to Implement” CSS Grid
Layout on February 2, 2015 (http://bkaprt.com/cgl/05-05/).
In October 2015, many of the examples I developed began
to work in Firefox Nightly builds when enabling the flag
layout.css.grid.enabled. I’m excited to see that implemen-
tation take shape.

Internet Explorer

At the time of writing, Internet Explorer and Edge support
the old implementation with the –ms prefix. My 2012 24 Ways
article demonstrates how this implementation works (http://
bkaprt.com/cgl/05-06/). Microsoft has publicly indicated that
updating Grid to the new specification is high priority on the
Edge backlog (http://bkaprt.com/cgl/05-07/).

POLYFILLING GRID
François Remy has developed a polyfill that implements much
of the Level 1 syntax (http://bkaprt.com/cgl/05-08/).

Once there is a good level of browser support, I would rec-
ommend using Grid and offering a fallback where Grid is not
supported. That fallback might involve a polyfill, but could also
be a simpler layout.

WHY LOOK AT CSS GRID
LAYOUT NOW?

Moving to a new layout method in CSS is hard. Adopting mod-
ern layout methods using Grid and Flexbox feels just as difficult
as making the leap away from using tables back in the early days
of CSS. But as browser support develops over the next several
months, I believe there will be opportunities for some of us to

http://bkaprt.com/cgl/05-05/
http://bkaprt.com/cgl/05-06/
http://bkaprt.com/cgl/05-06/
http://bkaprt.com/cgl/05-07/
http://bkaprt.com/cgl/05-08/

50 GET READY FOR CSS GRID LAYOUT

start using Grid Layout in production. With Grid support in
Blink and potentially in Safari if the Webkit implementation is
adopted, there will be use cases for mobile devices; in the case
of no Grid support, a linearized layout would be acceptable
and the so-called “desktop” version of the site could use older
layout methods.

Using Grid for prototyping content-
driven responsive designs
CSS Grid Layout is currently a great tool for wireframing and
prototyping responsive design. Once it is not behind a flag in
Chrome, those prototypes could easily be shared with clients.
I’m a great fan of letting content, rather than specific devices,
dictate breakpoints. Grid Layout makes it simple to play around
with the breakpoints and how content is reorganized within
them, even if ultimately you need to use older methods to build
your final layouts.

Offering feedback on the specification

One of the most important reasons for designers and devel-
opers to start experimenting with CSS Grid Layout and other
emerging specifications is so that we can comment on (and help
shape) the developing standards.

Anyone can join the www-style mailing list, set up a filter
for “css-grid,” and follow along with the discussions. Many of
those discussions are heavily technical, but sometimes feedback
is requested on terminology, or whether developers actually
use a certain feature or not. This is crucial: developers so often
complain that a specification does not meet their needs, and
yet they rarely get involved at a point when changes could be
addressed. Specification writers are usually not practicing web
developers, but the documents they work on are available as
Editor’s and Working Drafts. The process is open for our feed-
back if we are willing to give it.

Take a look at the resources I’ve listed here, experiment
with the examples in this book, and get involved with offering

51WHAT ’S NEXT FOR GRID?

feedback on the specification or in logging bugs against browser
implementations. I believe that CSS Grid Layout is the layout
method we have been waiting for, and I hope that we’ll be using
it in production very soon.

52 GET READY FOR CSS GRID LAYOUT

RESOURCES
Find out more about CSS Grid Layout and stay current with
browser support and developments in the specification. The
latest version of the specification: http://bkaprt.com/cgl/06-01/.

Search “css-grid” on the www-style mailing list: http://
bkaprt.com/cgl/06-02/ to read and participate in current dis-
cussion on the Grid spec.

Grid by Example, my resource site on CSS Grid Layout:
http://bkaprt.com/cgl/05-01/ is a collection of step-by-step exam-
ples and experiments with Grid. I’ll add to this resource fre-
quently as the spec and browser support develop.

Also see these examples from Igalia, which is doing the
Blink and Webkit implementation of Grid: http://bkaprt.com/
cgl/06-03/.

http://bkaprt.com/cgl/06-01/
http://bkaprt.com/cgl/06-02/
http://bkaprt.com/cgl/06-02/
http://bkaprt.com/cgl/05-01/
http://bkaprt.com/cgl/06-03/
http://bkaprt.com/cgl/06-03/

53ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS
I owe a debt to many people who have spent time discussing
Grid with me, pointing out my mistakes, and being interested
in my opinions. In particular, I’m grateful to Spec editors Tab
Atkins, Jr. and fantasai, and the developers at Igalia. Also, I
appreciate every conference audience member who has come
up and chatted with me after my Grid presentations. My ability
to understand and teach Grid is informed by these conversa-
tions—revealing which things are confusing, and which are
truly exciting for other developers and designers. Thank you.

54 GET READY FOR CSS GRID LAYOUT

REFERENCES
Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Introduction

00-01	 http://www.w3.org/TR/2011/WD-css3-grid-layout-20110407/

Chapter 1

01-01	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-
based.html

01-02	 https://github.com/abookapart/css-grid-layout-code/

01-03	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-
based-shorthand.html

01-04	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-
based-grid-area.html

01-05	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-
based-span.html

01-06	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-
based-grid-area.html

Chapter 2

02-01	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-
layout.html

02-02	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-
boxy.html

02-03	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-
boxy-hover.html

Chapter 3

03-01	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch3-
layout.html

03-02	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch3-
boxy.html

http://www.w3.org/TR/2011/WD-css3-grid-layout-20110407/
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based.html
https://github.com/abookapart/css-grid-layout-code/
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based-shorthand.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based-shorthand.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based-grid-area.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based-grid-area.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based-span.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based-span.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based-grid-area.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch1-line-based-grid-area.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-layout.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-layout.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-boxy.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-boxy.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-boxy-hover.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch2-boxy-hover.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch3-layout.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch3-layout.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch3-boxy.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch3-boxy.html

55REFERENCES

Chapter 4

04-01	 http://lists.w3.org/Archives/Public/www-style/2013May/0114.html

04-02	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch4-
layout.html

04-03	 https://github.com/abookapart/css-grid-layout-code/blob/master/ch4-
layout-styles.css

Chapter 5

05-01	 http://gridbyexample.com/

05-02	 http://www.igalia.com/

05-03	 http://blogs.igalia.com/mrego/2015/01/08/css-grid-layout-2014-recap-
implementation-status/

05-04	 http://nightly.webkit.org/

05-05	 http://article.gmane.org/gmane.comp.mozilla.devel.platform/12343

05-06	 http://24ways.org/2012/css3-grid-layout/

05-07	 https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/
suggestions/6514853-update-css-grid

05-08	 http://fremycompany.com/BG/2014/CSS-Grid-Polyfill-Level-1-346/

Resources

06-01	 http://www.w3.org/TR/css-grid-1/

06-02	 https://www.w3.org/Search/Mail/Public/search?type-index=
www-style&index-type=t&keywords=%5bcss-grid%5d&search=Search

06-03	 http://igalia.github.io/css-grid-layout/index.html

http://lists.w3.org/Archives/Public/www-style/2013May/0114.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch4-layout.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch4-layout.html
https://github.com/abookapart/css-grid-layout-code/blob/master/ch4-layout-styles.css
https://github.com/abookapart/css-grid-layout-code/blob/master/ch4-layout-styles.css
http://gridbyexample.com/
http://www.igalia.com/
http://blogs.igalia.com/mrego/2015/01/08/css-grid-layout-2014-recap-implementation-status/
http://blogs.igalia.com/mrego/2015/01/08/css-grid-layout-2014-recap-implementation-status/
http://nightly.webkit.org/
http://article.gmane.org/gmane.comp.mozilla.devel.platform/12343
http://24ways.org/2012/css3-grid-layout/
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/6514853-update-css-grid
https://wpdev.uservoice.com/forums/257854-microsoft-edge-developer/suggestions/6514853-update-css-grid
http://fremycompany.com/BG/2014/CSS-Grid-Polyfill-Level-1-346/
http://www.w3.org/TR/css-grid-1/
https://www.w3.org/Search/Mail/Public/search?type-index=www-style&index-type=t&keywords=%5bcss-grid%5d&search=Search
https://www.w3.org/Search/Mail/Public/search?type-index=www-style&index-type=t&keywords=%5bcss-grid%5d&search=Search
http://igalia.github.io/css-grid-layout/index.html

56 INDE X

INDEX

A

Atkins, Tab 41

B

Blink 4, 48
breakpoints 33
browser support 48

C

CSS Grid Layout specification 1

D

Defining a grid 5

F

Flexbox 41

G

grid area 11
grid-area property 7
Grid by Example 52
grid cell 11
grid-column property 7
grid gutters 13
grid lines 11
grid-row property 7
grid template areas 16, 33
grid track 11

I

Igalia 48, 52
image layout example 25
Internet Explorer 49

L

layering items 29
line-based placement 6, 36

M

media queries 33
Microsoft 1
Mozilla 49

N

named grid lines 14
nested grids 24

P

polyfilling Grid 49
prototyping layouts 39

R

Remy, François 49
repeat keyword 27

S

span keyword 13
subgrids 24

T

three-column layout example 20

W

W3C 1
Webkit 48
Web Standards Project 1
www-style mailing list 52

ABOUT A BOOK APART
We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because
working designer-developers can’t afford to waste time.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans,
both by Xavier Dupré. Headlines and cover are set in Titling
Gothic by David Berlow.

ABOUT THE AUTHOR

Rachel Andrew lives in Bristol, England. She is the cofounder
of edgeofmyseat.com, the web development company behind
Perch CMS. She works on everything from product develop-
ment to DevOps to CSS, and writes about these subjects on her
blog at rachelandrew.co.uk.

Rachel has been working on the web since 1996 and writing
about the web for almost as long. She’s written several books
including the bestselling CSS Anthology from Sitepoint, and
recent ventures into self-publishing have produced The Prof-
itable Side Project Handbook and CSS3 Layout Modules, Second
Edition. She is a regular columnist for A List Apart as well as
other publications online and in print. When she’s not writing,
Rachel often works with other authors as a technical editor.

Rachel is a keen distance runner who encourages people to
join her for a run when attending conferences, with varying
degrees of success! You can find her on Twitter as @rachel-
andrew.

http://www.edgeofmyseat.com
http://www.edgeofmyseat.com
http://www.rachelandrew.co.uk
https://twitter.com/rachelandrew
http://www.edgeofmyseat.com

	Introduction
	Chapter 1: What Is CSS Grid Layout?
	Chapter 2: Laying Things Out on the Grid
	Chapter 3: CSS Grids and Responsive Design
	Chapter 4: Grid, Another Tool in Our Kit
	Chapter 5: What’s Next for Grid?
	Resources
	Acknowledgements
	References
	Index

