
No

Foreword by Lara Hogan

JAVASCRIPT FOR
WEB DESIGNERS

Mat Marquis

Brief books for people who make websites

20



MORE FROM A BOOK APART

Practical SVG
Chris Coyier

Design for Real Life
Eric Meyer & Sara Wachter-Boettcher

Git for Humans
David Demaree

Going Responsive
Karen McGrane

Responsive Design: Patterns & Principles
Ethan Marcotte

Designing for Touch
Josh Clark

Responsible Responsive Design
Scott Jehl

You’re My Favorite Client
Mike Monteiro

On Web Typography
Jason Santa Maria

Sass for Web Designers
Dan Cederholm

Just Enough Research
Erika Hall

Visit abookapart.com for our full list of titles.

http://abookapart.com


Copyright © 2016 Mat Marquis
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Executive Director: Katel LeDû
Editor: Erin Kissane
Technical Editors: Peter Richardson, Mike Pennisi
Copyeditor: Lisa Maria Martin
Proofreader: Katel LeDû
Compositor: Rob Weychert
Ebook Producer: Ron Bilodeau

ISBN: 978-1-937557-47-8

A Book Apart
New York, New York
http://abookapart.com

10 9 8 7 6 5 4 3 2 1

http://abookapart.com


TABLE OF CONTENTS

	 1 	 | 	 Introduction

CHAPTER 1

	 7 	 |	 Getting Set Up

CHAPTER 2

	 24 	 |	 Understanding Data Types

CHAPTER 3

	 5 4 	 |	 Conditional Statements

CHAPTER 4

	 7 5 	 |	 Loops

CHAPTER 5

	 9 2 	 |	 DOM Scripting

	 1 2 7 	 | 	 Conclusion

	 1 2 8 	 | 	 Resources

	 1 3 0 	 | 	 Acknowledgments

	 1 3 2 	 | 	 References

	 1 3 3 	 | 	 Index



FOREWORD
LIKE MANY PEOPLE in front-end development, as I’ve grown 
and learned, I’ve also come to specialize in different aspects of 
the field—I’ve built my expertise in HTML, CSS, and how to 
keep websites speedy. But, no matter what skills I’ve explored, 
there’s an ever-growing—and tremendously intimidating—list 
of tools and tech to learn. 

JavaScript is on that list, and for many years, I success-
fully avoided learning too much about it. Instead, I relied on 
Googling error messages, or copying and pasting scripts and 
trying to tweak them, never fully grokking what the code 
was doing.

More than a decade into my career, I was handed JavaScript 
for Web Designers and I felt that old twinge of intimidation. 
JavaScript was still a foreign language to me; I’ve been able to 
rely on search engines and the kindness of strangers to help 
get me this far— why not continue to punt on this scary, big 
piece of technology?

Ten pages in, all my fears of this nebulous JavaScript beast 
were gone.

I’ve learned more about this language from JavaScript for 
Web Designers than in the entire time I’ve worked in this indus-
try. Mat's writing makes JavaScript remarkably straightforward 
to learn. From data types to loops, I was able to make sense 
of—and then easily try my hand at—this language that had been 
a black box to me. The book successfully builds on foundational 
concepts and doesn’t rush things, instead navigating the reader 
safely through easy-to-try examples.

But this book’s not just good at teaching you about JavaScript; 
its superpower is how effectively it’ll calm your fears. I walked 
away from the book feeling unafraid: I can finally approach 
and use JavaScript without getting anxious about typing in my 
console. No matter your background—designer, developer, new 
to the game, or just new to JavaScript—you’ll find that JavaScript 
for Web Designers is accessible, empathetic, and fun to read. 
I’m so excited for you to turn the page and dig in.

—Lara Hogan



INTRODUCTION

INTRODUCTION
IN ALL FAIRNESS, I should start this book with an apology—not 
to you, reader, though I don’t doubt that I’ll owe you at least 
one by the time we get to the end. I owe JavaScript a number 
of apologies for the things I said to it during the early years of 
my career—things strong enough to etch glass.

This is my not-so-subtle way of saying that JavaScript can 
be a tricky thing to learn.

HTML and CSS are tough in their own ways, but we can 
learn about them piecemeal. They’re simpler in that we type 
something and it happens: border-radius rounds corners the 
way we tell it to; a p tag is for paragraphs, full stop.

When I was just starting out with JavaScript, on the other 
hand, everything I learned seemed to be the tip of a new and 
terrifying iceberg—a link in a chain of interconnected con-
cepts, each one more complicated than the last—variables and 
logic and vocabulary and mathematics that I assumed I would 
never fully understand. When I’d type something, it wouldn’t 
always mean exactly what it said. If I pasted something into the 
wrong place, it could anger JavaScript. When I made a mistake, 
things broke.

If it feels like I’ve just plagiarized the scariest pages of your 
dream journal and you’ve already thrown this book across the 
room in horror, take heart: I say all this not to confirm your 
fears about JavaScript, but to say that I had the same ones. It 
wasn’t long ago that I was copying and pasting pre-made scripts 
of dubious quality, then crossing my fingers and hoping for 
the best as I reloaded a page. An entire programming language 
seemed like too much to ever fully understand, and I was cer-
tain that I wasn't tuned for it. I was a developer, sure, but I 
wasn't a developer-developer. I didn't have the requisite robot 
brain; I just put borders on things for a living.

I was intimidated.
You might be in the same place I once was, standing here on 

the precipice of a hundred-odd pages, waiting to get blindsided 
by talk of “variable hoisting” and “scope chains” somewhere 
around page ten. I won’t do that to you, and I won’t talk down 
to you, either.

1



JavaScript isn't the easiest thing to understand, and my goal 
isn’t to cover all of it in this book. I don’t know all of it, and I’m 
not certain anyone does. My goal is to help you reach what is 
arguably the most important part of learning any language: the 
moment when things start to click.

What Even Is JavaScript?

The name itself could be a little confusing. Seeing “Java” in 
there might conjure up images of ancient browser “applets” 
or server-side programming languages. When JavaScript first 
came about back in 1995 (http://bkaprt.com/jsfwd/00-01/), it was 
originally named “LiveScript”—a nod to the fact that it runs as 
soon as the browser requests and parses it. But Java was the new 
hotness back in 1995—and the two languages shared a few syn-
tactical similarities—so for the sake of marketing, “LiveScript” 
became “JavaScript.”

JavaScript is a lightweight but incredibly powerful script-
ing language. Unlike many other programming languages, 
JavaScript doesn’t need to be translated from human-readable 
code into a form that the browser can understand—there’s no 
compiler step. Our scripts are sent across the wire at more or 
less the same time as our other assets—markup, images, and 
stylesheets—and interpreted on the fly.

While we most frequently encounter it through our brows-
ers, JavaScript has snuck into everything from native applica-
tions to ebooks. It’s one of the most popular programming 
languages in the world, largely because you can find it in so 
many different environments. JavaScript doesn’t have any strict 
requirements for where it runs as long as there’s an interpreter 
to make sense of it, and open-source browsers mean open-
source JavaScript interpreters—the part of the browser that 
parses and executes JavaScript. When developers drop these 
interpreters into new contexts, we end up with  
JavaScript-powered web servers (http://nodejs.org) and home-
made robots (http://johnny-five.io). We’ll be looking at JavaS-
cript as we encounter it in the browser, but there’s good news 
if you find yourself feeling particularly mad-scientist-y by the 
time we’re finished: the syntax you’re learning here is the same 

JAVASCRIPT FOR WEB DESIGNERS2

http://bkaprt.com/jsfwd/00-01/
http://nodejs.org
http://johnny-five.io


INTRODUCTION

syntax you might one day end up using in your JavaScript-pow-
ered freeze ray.

The interactive layer

JavaScript allows us to add interaction to our pages as a comple-
ment to the structural layer that is markup and the presentational 
layer that is CSS.

It gives us a tremendous amount of control over a user's 
interactions with a page—that control even extends beyond 
the page itself and allows us to alter the browser’s built-in 
behaviors. You’ve likely encountered a simple example of 
JavaScript-altered browser behavior more times than you can 
count: form-input validation. Before a form can be submitted, 
a validation script loops through all associated inputs, checks 
their values against a set of rules, and either allows the form 
submission to go through, or prevents it (FIG 0.1). 

With JavaScript, we’re able to build richer experiences for 
users, like pages that respond to their interactions without 
needing to direct them to a new page, even when requesting 
new data from the server. It also allows us to fill in gaps where 
a browser’s built-in functionality might fall short, work around 
major bugs, or port brand-new features back to older browsers 
that lack native support for them. In short, JavaScript allows 
us to create more advanced interfaces than HTML and CSS 
could do alone.

FIG 0.1: Validating the contents of an input as data is entered—rather than when the page 
is submitted—is a textbook example of JavaScript enhancement.

3



What JavaScript Isn’t (Anymore)

Though it gives us a lot of power over browser behavior, it isn’t 
hard to imagine how JavaScript might get a bad reputation. To 
render a page unusable with CSS (no pun intended), we have 
to be explicit about it. body { display: none; } isn’t some-
thing that generally makes it into our stylesheets by accident, 
though I wouldn’t necessarily put it past me. It’s even harder 
to make a markup mistake that would prevent the page from 
functioning at all—a strong tag mistakenly left open may not 
result in the prettiest page ever, but it isn’t likely to completely 
prevent someone from using it. And when CSS and markup 
errors do cause major issues, it’s apt to happen in a visible way, 
so if HTML or CSS completely break the page, we’re likely to 
see it in our testing.

JavaScript differs there, though. For example: if we include 
a small script to validate a street address entered into a form 
input, the page will render just as expected—and when we 
punch in “5 Address Street” to test it and get no errors, our 
form validation may seem to be going according to plan. But if 
we’re not careful about the rules for our validation script, a user 
with an oddly formatted address could very well be prevented 
from submitting valid information. For us to test thoroughly, 
we’d need to try as many strange addresses as we could find, 
and we’d be bound to miss a few.

Back when the web was younger and the web development 
profession was brand-new, we didn’t have clearly defined best 
practices for handling JavaScript enhancements. Consistent 
testing was all but impossible, and browser support was incredi-
bly spotty. This combination led to a lot of flaky, site-obliterating 
scripts making their way into the wild. Meanwhile, some of 
the internet’s more unsavory types suddenly found themselves 
with the power to influence the behavior of users' browsers, 
held back only by boundaries that were inconsistent at best 
and non-existent at worst. This was not, as one might expect, 
always used for good.

JavaScript caught a lot of flak in those days. It was seen 
as unreliable, and even dangerous—a shoddily-built pop-

JAVASCRIPT FOR WEB DESIGNERS4



INTRODUCTION

up-window engine lurking somewhere beneath the surface of 
the browser.

Times have changed, though. The same kinds of web stan-
dards efforts that brought us semantically-meaningful markup 
and sane CSS support have also made JavaScript’s syntax more 
consistent from browser to browser, and set reasonable con-
straints around the parts of a browser’s behavior it can influ-
ence. At the same time, JavaScript “helper” frameworks like 
jQuery—built on a foundation of best practices and designed 
to normalize browser quirks and bugs—now help developers 
write better, faster JavaScript.

The DOM: How JavaScript Communicates with the Page

JavaScript communicates with the contents of our pages by way 
of an API named the Document Object Model, or DOM (http://
bkaprt.com/jsfwd/00-02/). The DOM is what allows us to access 
and manipulate the contents of a document with JavaScript. Just 
like Flickr’s API might allow us to read from and write infor-
mation to their service, the DOM API allows us to read, alter, 
and remove information from documents—to change things 
on the webpage itself.

The DOM serves two purposes. The first is providing JavaS-
cript with a structured “map” of the page by translating our 
markup to a form that JavaScript (and many other languages) 
can understand. Without the DOM, JavaScript wouldn’t have 
any sense of a document’s contents. The entirety of the docu-
ment’s contents—every individual part of our document—is 
a “node” that JavaScript is able to access via the DOM. Every 
element, comment, and even snippet of text is a node.

The DOM’s second purpose is to provide JavaScript with a 
set of methods and functions that allow access to the mapped 
nodes—fetching a list of all p tags in the document, for example, 
or  gather ing  up a l l  e lements  with  a  c lass  of  
.toggle that have a .collapsible parent element. These meth-
ods are standardized across browsers, with catchy names like  
getElementsByTagName or createTextNode. Having these 
methods built into JavaScript can lead to a little confusion over 

5

http://bkaprt.com/jsfwd/00-02/
http://bkaprt.com/jsfwd/00-02/


where JavaScript ends and the DOM begins, but fortunately 
that isn’t something we have to worry about just yet.

Let’s Get Started

Over the course of this book, we’ll learn the rules of the JavaS-
cript game as it is played, spend a little quality time wading 
through the DOM, and pull apart some real scripts to see what 
makes them tick. Before that, though—before we go toe-to-toe 
with the beast that is JavaScript—we have to get familiar with 
the tools of our new trade. 

I’m from a carpentry background, and if someone had sent 
me up on a roof on day one, I’m not sure I would have fared too 
well—or been around to write any of this in the first place. So in 
this next chapter, we’ll start getting a feel for the development 
tools and debugging environments built into modern browsers, 
and we’ll set up a development environment so we’re ready to 
start writing some scripts.

FIG 0.2: The phrase “DOM tree” makes more sense if you stand on your head.

JAVASCRIPT FOR WEB DESIGNERS6



BEFORE WE SET FOOT on JavaScript’s turf, let’s get a feel for our 
development environment. First we’re going to set up a page 
where we can do a little work, then we’re going to have a look 
at that page through the lens of our browsers’ built-in JavaScript 
debugging tools, and finally, we’ll start making sense of the basic 
rules of JavaScript syntax.

INCLUDING JAVASCRIPT IN A PAGE
If you’ve worked with CSS at all, you’ll find that including a 
script in your page follows more or less the same pattern as 
including a stylesheet, though with a slightly different syntax 
and a few small caveats.

Just like CSS, you can embed scripts within the document 
itself—by wrapping it in <script></script>, the same as you’d 
use <style></style> tags to include your CSS.

GETTING SET UP1
7Getting Set Up



<html>
<head>
    ...
<script>
    // Your scripts go here.
</script>
</head>

All the same drawbacks as in-page styles apply here: if an 
identical script is meant to be used across multiple pages, there’s 
no sense in copying and pasting it into every document. You’ll 
end up with maintenance headaches and pages falling out of 
sync if you’re updating things as you go along. 

Fortunately, just as we use a single stylesheet across multiple 
pages, we can easily reference an external script anywhere we 
need it. It looks a bit different from the way CSS uses link, 
instead adding an src attribute to the script tag.

<html>
<head>
    ...
<script src="js/script.js"></script>
</head>

If you’ve encountered examples of external scripts around 
the internet, you might have noticed that older examples of 
script tags tend to have JavaScript-specific attributes bolted 
onto them by default, such as language or type attributes:

<script language="Javascript" src="js/script.js"> 
</script>

<script type="text/javascript" src="js/script.js"> 
</script>

These have all been deprecated or made optional in HTML5. 
We’re better off not bothering with any of them, and sticking 
with <script src="js/script.js"></script>.

JAVASCRIPT FOR WEB DESIGNERS8



Naturally, script accepts any of HTML’s global attributes—
class, id, data- attributes, and so on—and HTML5 has added 
a few helpful (and optional) attributes to the script element 
that we’ll get to in a bit.

Where in a document we choose to include our external 
stylesheets—whether we use <link href="css/all.css" 
rel="stylesheet"> in the head of the document or just before 
</body>—doesn’t make a tremendous difference, so we con-
ventionally include them in head. When it comes to JavaScript, 
though, we need to put a little more thought into placement, no 
matter whether the scripts are external or part of the page itself.

Script placement

At the risk of oversimplifying, browsers parse the contents of 
a file from top to bottom. When we include a script file toward 
the top of an HTML page, the browser parses, interprets, and 
executes that script before figuring out what elements are actu-
ally on the page. So, if we’re planning on using the DOM to 
access elements within the page, we need to give the browser 
time to assemble a map of those elements by looking through 
the rest of the page—otherwise, when JavaScript goes looking 
for one in our script, we’re apt to get an error saying that the 
elements don’t exist.

There are a couple of methods for dealing with this problem 
within the script itself—the browser has methods for notifying 
JavaScript when the page has been fully parsed, and we can tell 
our scripts to wait for that event—but there are other downsides 
to including script files at the top of a page.

Including too many scripts in the head can make our pages 
feel slow. Upon encountering a remote script in the head of the 
document, the browser completely stops parsing the page while 
it fetches and parses the script, then moves on to either parsing 
the next script—unless we intervene, scripts are always run in 
order—or parsing the page itself. By including a great deal of 
JavaScript in the head of the document, we introduce the poten-
tial for users to experience a delay before the page appears.

9Getting Set Up



An alternative to this rendering delay and potential for 
error is to include scripts at the bottom of the page, just before  
</body>. Since the page is parsed top-to-bottom, this ensures 
that all our markup is ready—and the page is rendered—before 
our scripts are requested.

This means we’re shifting the burden of that slight delay from 
the rendering of a page to the request for a script, which isn't 
always ideal; there are times when we might want a script to 
be parsed as quickly as possible, even before the DOM is avail-
able. For example, Modernizr—a collection of scripts that test 
browser support for CSS and JavaScript features—recommends 
you include it in the head so the results of those tests are avail-
able for immediate use (https://modernizr.com/). Modernizr is 
light enough that the rendering delay it causes is very slight, and 
the results of its feature tests need to be available to any other 
scripts on the page, so speed is of the essence—it makes sense 
to block the page render for a fraction of a second to ensure it 
works reliably.

defer and async

While HTML5 removed the need for a lot of crufty old attributes 
on script, it did add a few new ones to deal with some of the 
concerns above: <script async> and <script defer>.

The async attribute on a script element tells the browser 
that it should—predictably—execute the script asynchronously. 
Upon encountering <script src="script.js" async> at the 
top of the document, the browser will initiate a request for 
the file and parse it as soon as it’s available, but go on to parse 
the rest of the page in the meantime. This handles the issue 
of “blocking” requests for scripts in the head, but still doesn’t 
guarantee the page will have been parsed in time for any DOM 
scripting, so we’ll only want to use this in situations where 
we’re not going to access the DOM—or where we’re program-
matically waiting for the document to finish loading before 
our script does anything with the DOM. It brings up a new 
issue, as well: if we’re loading multiple scripts using async, we 
no longer know if they’ll be loaded in the order in which they 

JAVASCRIPT FOR WEB DESIGNERS10

https://modernizr.com/


appear in the page, so we shouldn’t use async for any scripts 
that are involved in dependencies.

defer solves the issue of waiting for the DOM to be fully 
available by indicating to the browser that it should request 
these scripts but not parse them until it has finished parsing 
the DOM. defer means our scripts at the top of the document 
are requested in parallel with the parsing of the page itself—
so there's less chance of a perceptible delay for the user, and 
the scripts don’t fire until the page is ready for modification. 
And unlike async, defer executes our scripts in the order it 
encounters them.

These two attributes handily solve all our problems with 
blocking requests and timing, save for one small catch: while 
defer has been around for a long time, it was only recently 
standardized, and async is brand new, so we can’t guarantee 
they’ll be available in all browsers.

In A Book Apart’s own Responsible Responsive Design, 
Scott Jehl recommends loading scripts asynchronously using 
JavaScript itself: a tiny “loader” script in the head of the 
document that requests additional scripts as needed (http:// 
bkaprt.com/jsfwd/01-01/). This not only allows us to load scripts 
efficiently and asynchronously, but also to decide whether they 
should be loaded at all: if we detect that a user is on a device that 
supports touch events, for example, we can load a script that 
gives our interface custom touch events. If touch events aren’t 
supported, we never make that request—and the most efficient 
possible request is the one we never make.

All of this is a lot to take in, and we’re still only scratching the 
surface of script loading. In the examples that follow, though, 
our needs are simple. We want to make sure the page has been 
completely parsed before any of our scripts run, so nothing 
needs to be in the head of the document—meaning that there’s 
no need for defer. An external script outside the head won’t 
cause any blocking behavior, so we won’t need async either. 
Since there isn’t a strong case for blocking the page render with 
the scripts we’ll be writing—and we’re going to need the DOM 
to be available, later on—we’ll include our external scripts just 
before the </body> tag.

11Getting Set Up

http://bkaprt.com/jsfwd/01-01/
http://bkaprt.com/jsfwd/01-01/


A blank slate

Before we can write any serious JavaScript, we need to set up 
a blank canvas—a directory with a plain ol’ HTML document.

<!doctype html>
<html lang="en">
<head>
    <meta charset="utf-8">
</head>
<body>
</body>
</html>

For the sake of keeping things simple and consistent, we’re 
going to load our external script just before we close the body 
tag. Since it’s external, our script element will have an src 
attribute pointing to our script file—which, for now, is just an 
empty file named script.js. I usually save mine in a js/ subdi-
rectory—it’s not a requirement by any stretch, but it can help 
keep things organized.

<!doctype html>
<html lang="en">
<head>
    <meta charset="utf-8">
</head>
<body>

    <script src="js/script.js"></script>
</body>
</html>

Your editor and you

As with HTML and CSS, there isn’t a lot of overhead to get 
started with JavaScript—any plaintext editor will do. JavaScript 
syntax can be a little harder to parse with the naked eye, 
though—at least until you’ve been steeped in it for a while. 

JAVASCRIPT FOR WEB DESIGNERS12



Having your editor assign colors to keywords, functions, vari-
ables, and so on will make a script file a lot easier to understand 
at a glance.

Fortunately, you’d be hard-pressed to find a modern code 
editor that doesn’t handle JavaScript syntax highlighting right 
out of the box. It’s a safe bet that your editor of choice handles 
JavaScript syntax highlighting just as handily as it does markup 
and CSS, just by merit of our file having the .js extension— 
not that we’d know that from opening up our still-empty  
script.js file.

We’ll need that for sure once we start assembling JavaS-
cript’s component parts into purposeful, functional script files. 
While we’re getting the hang of the basics, though, let’s open 
our preferred browser and start getting a feel for in-browser 
development tools.

OUR DEV TOOLS
There was a time—not all that long ago, honestly—where 
browsers didn’t give us much help dealing with JavaScript. At 
best we’d get a heads-up that there was an error of some kind, 
and a sometimes-accurate guess at the line number where it 
occurred. Debugging a script meant making a change, reloading 
the page, hoping nothing blew up, and repeating the process if 
it did. There was usually no way of getting more details on the 
issue—at least, no particularly helpful details.

Luckily, our development tools grew up as JavaScript got 
more and more advanced, and modern desktop browsers all 
come with advanced JavaScript debugging tools built in. We 
can still approach development that way, of course, but it’s a 
bit like using the back of a nail gun to pound nails into a board, 
and just as likely to end with us getting shot in the foot. 

In the grand scheme, getting a feel for your dev tools will 
end up saving you a tremendous amount of time tracking down 
bugs. For our purposes, it gives us a space to start experiment-
ing with JavaScript’s syntax.

We’ll be looking at Chrome’s dev tools here, but the basics 
will apply to whatever browser you most prefer. Browsers’ 

13Getting Set Up



dev tools are usually similar right down to the command you 
use to open them up: command+option+i on a Mac and con-
trol+shift+i on a PC. Things will look a little different from 
browser to browser, but you’ll find that all of them share a very 
similar layout.

Now, if you’ve already spent some quality time with these 
tools in your development browser of choice, inspecting ele-
ments and debugging CSS issues, then you’ll be familiar with 
the “elements” tab, showing all the elements on the page and 
their associated styles. Beyond that, the other tabs will vary a 
bit from browser to browser.

Most developer tools also feature a “network” tab, allowing 
you to monitor the number and size of the requests made by a 
page and the time it takes to load them all, as well as a “resources” 
tab, to let you look through all the resources associated with a 
page, from stylesheets to JavaScript files to cookies. Some 
browsers will also include network information under 
“resources.” There’s usually some form of “timeline” tab that 
charts information about how a page is rendered, such as the 
number of times the browser has to go through and “repaint” 
the styles throughout the page—you may have to reload the 
page with this tab open before you see much (FIG 1.1).

We’ll be spending most of our debugging time in the “con-
sole” tab, which allows you to run JavaScript in what’s known 
as a REPL, or read-eval-print loop (http://bkaprt.com/jsfwd/ 
01-02/). You can write JavaScript into the console and execute 
it the same way the browser’s JavaScript engine would if it 
lived in the page. This has a couple of benefits: first, we can 
start tinkering with JavaScript on any page we want, without 
worrying too much about a dev environment. Second, anything 
we write in the console is designed to be ephemeral: by default, 
any changes you’ve made in JavaScript will be wiped out if you 
reload the page.

The JavaScript console

The JavaScript console has two main functions when it comes 
to testing and debugging: it provides us with a place to log errors 

FIG 1.1: Chrome’s dev tools open to the “console” tab.

JAVASCRIPT FOR WEB DESIGNERS14

http://bkaprt.com/jsfwd/01-02/
http://bkaprt.com/jsfwd/01-02/


and information, and a JavaScript prompt for interacting with 
the page and our scripts directly.

In its simplest form, the JavaScript console serves to show 
you any syntax errors in your scripts—if a typo should sneak 
into your script or part of the script references something that 
doesn’t exist, you’re no longer left wondering what’s keeping 
your script from running.

Most dev consoles go further than only showing outright 
errors, providing you with warnings about features that brows-
ers might be removing soon, failed requests, and so on. It’s very 
rare that I do any development without the console open, just 
to be on the safe side.

Oftentimes, though, we’ll encounter a situation where there 
aren’t any outright errors in our scripts, but things still don’t 
seem to be working quite the way we’d expect them to—or 
we need a simple way to flag for ourselves that certain parts 
of a script are being executed, since so much of our logic is 
happening invisibly. In these cases, you can use some methods 
built into the browser to send up the occasional signal flare—to 

dev tools are usually similar right down to the command you 
use to open them up: command+option+i on a Mac and con-
trol+shift+i on a PC. Things will look a little different from 
browser to browser, but you’ll find that all of them share a very 
similar layout.

Now, if you’ve already spent some quality time with these 
tools in your development browser of choice, inspecting ele-
ments and debugging CSS issues, then you’ll be familiar with 
the “elements” tab, showing all the elements on the page and 
their associated styles. Beyond that, the other tabs will vary a 
bit from browser to browser.

Most developer tools also feature a “network” tab, allowing 
you to monitor the number and size of the requests made by a 
page and the time it takes to load them all, as well as a “resources” 
tab, to let you look through all the resources associated with a 
page, from stylesheets to JavaScript files to cookies. Some 
browsers will also include network information under 
“resources.” There’s usually some form of “timeline” tab that 
charts information about how a page is rendered, such as the 
number of times the browser has to go through and “repaint” 
the styles throughout the page—you may have to reload the 
page with this tab open before you see much (FIG 1.1).

We’ll be spending most of our debugging time in the “con-
sole” tab, which allows you to run JavaScript in what’s known 
as a REPL, or read-eval-print loop (http://bkaprt.com/jsfwd/ 
01-02/). You can write JavaScript into the console and execute 
it the same way the browser’s JavaScript engine would if it 
lived in the page. This has a couple of benefits: first, we can 
start tinkering with JavaScript on any page we want, without 
worrying too much about a dev environment. Second, anything 
we write in the console is designed to be ephemeral: by default, 
any changes you’ve made in JavaScript will be wiped out if you 
reload the page.

The JavaScript console

The JavaScript console has two main functions when it comes 
to testing and debugging: it provides us with a place to log errors 

FIG 1.1: Chrome’s dev tools open to the “console” tab.

15Getting Set Up

http://bkaprt.com/jsfwd/01-02/
http://bkaprt.com/jsfwd/01-02/


send yourself messages, inspect the contents of variables, and 
leave a trail of breadcrumbs showing a path through the logic 
of a script.

In the olden days, we repurposed a few of JavaScript’s ear-
liest built-in methods to perform some basic debugging—the 
much-derided alert(), a method that causes a native modal 
window to appear bearing our message of choice, in quotes 
between the parentheses, and an OK button to dismiss it  
(FIG 1.2).

There were a few equally exciting variations on this method: 
confirm() allows the user to “OK” or “cancel” the text we spec-
ify, and prompt(), which allows the user to input text in the 
modal window—both of these reported the user’s selection and 
input back to us for further use in our scripts. If you’ve agreed 
to an “end-use license agreement” or spent any quality time with 
Geocities in the past, you’ve likely encountered all of these at 
some point or another.

JavaScript developers learned pretty quickly that this was an 
obnoxious way to interact with users, and none of these meth-
ods see much use these days—at least, not much unironic use.

FIG 1.2: Using alert() on a live website is the JavaScript equivalent of shouting “fire” in a 
crowded theatre: it isn’t illegal, but certainly isn’t going to win you any friends.

JAVASCRIPT FOR WEB DESIGNERS16



What we did learn is that it gave us a quick and easy way of 
communicating things to ourselves while debugging, allowing 
us a little insight as to what was going on in our scripts. Ineffi-
cient as it was, we could set alerts telling us how far a script 
had progressed, whether parts of a script were being executed 
in the right order, and (by seeing which was the last alert 
to fire before we ran into an error) track down glaring issues 
line-by-line. This sort of debugging wouldn’t tell us much, of 
course—alert was really only designed to pass along a string 
of text, which would often mean inscrutable feedback like 
[object Object] when we wanted to look closer at what a 
part of our script meant.

These days, browsers compete on the quality of their dev 
tools, and we have tons of options for digging into the internals 
of our scripts—the simplest of which is still to send ourselves a 
message from inside the script, but with the potential to contain 
much more information than a simple string of text.

Writing to the console

The simplest way to output something to the console from our 
script is a method named console.log(). In its simplest form, 
console.log() works just like alert()—allowing you to pass 
yourself a note within your script.

We’ve officially reached the point where some things are 
easier to show than to tell, so let’s open up script.js in our editor 
and try the following line out for ourselves:

console.log("Hello, World.");

Save the file, switch back over to your browser, reload the 
page—and we’ve just written our very first line of JavaScript 
together (FIG 1.3).

Now, I know this doesn’t seem like the most exciting thing 
in the world just yet, but we can use console.log to do a 
tremendous amount of work. It comes in a couple of different 
flavors, as well: we can use console.warn and console.error 
the same way we use console.log, to make particular issues 
and messages stand out (FIG 1.4).

17Getting Set Up



One final note on the topic of console.log and its ilk: while 
writing to a console is supported in every modern browser, 
support isn’t universal—some older browsers don’t have a con-
sole at all. In particular, IE6 and IE7 are famous for breaking 
down upon encountering the unrecognized console.log 
method, throwing errors that are likely to break your scripts.

Fortunately, these methods have little place in production 
code—they’re really only something we’ll be using when writ-
ing and debugging our scripts, so there’s little risk of it causing 
any problems for users—unless we leave one in by accident. Be 
sure to check for any leftover debugging code like console.log 
before using a script on a live website, just to be safe.

Working in the console

Now, the JavaScript console is more than just a place to log 
messages—you likely noticed the blinking prompt below the 
logs earlier. This input is the REPL I mentioned earlier—the 
read-eval[uate]-print loop.

FIG 1.3: Well, hello to you too, dev console. FIG 1.4: console.warn and console.error are both useful when debugging a script.

JAVASCRIPT FOR WEB DESIGNERS18



This short explanation of the REPL is that it allows us to 
send things directly to the browser’s JavaScript parser, without 
needing to update our script file and reload the page. If you 
enter the same console.log("Hello, World."); in this space 
and hit return, it appears in the console.

We can use this to get information about the current state of 
elements on the page, check the output of scripts, or even add 
functionality to the page for the sake of testing. Right now, we 
can use it to try out new methods and get immediate feedback. 
If you punch in alert("Test") and hit enter, you’ll see what 
I mean: no changing files, no reloading the page, no-fuss-no-
muss. Just an ol’-fashioned obnoxious modal window, made 
to order.

It bears repeating that we can’t do any real damage by way 
of the console. Any changes we make to the page or to our 
scripts by way of the console REPL will evaporate as soon as 
you reload the page, with no changes made to any of our files.

Now we have a couple of options for experimenting with 
JavaScript via the console, and a dev environment where we 
can start cobbling our first few scripts together. We’re ready to 
get started learning the rules of JavaScript.

One final note on the topic of console.log and its ilk: while 
writing to a console is supported in every modern browser, 
support isn’t universal—some older browsers don’t have a con-
sole at all. In particular, IE6 and IE7 are famous for breaking 
down upon encountering the unrecognized console.log 
method, throwing errors that are likely to break your scripts.

Fortunately, these methods have little place in production 
code—they’re really only something we’ll be using when writ-
ing and debugging our scripts, so there’s little risk of it causing 
any problems for users—unless we leave one in by accident. Be 
sure to check for any leftover debugging code like console.log 
before using a script on a live website, just to be safe.

Working in the console

Now, the JavaScript console is more than just a place to log 
messages—you likely noticed the blinking prompt below the 
logs earlier. This input is the REPL I mentioned earlier—the 
read-eval[uate]-print loop.

FIG 1.3: Well, hello to you too, dev console. FIG 1.4: console.warn and console.error are both useful when debugging a script.

19Getting Set Up



THE FUNDAMENTAL RULES
JavaScript is complex for sure, but the global rules of the lan-
guage are surprisingly simple—and generally pretty forgiving, 
with a few exceptions. It’s helpful to run through some of these 
rules upfront, and don’t worry if they don’t all make perfect 
sense before we have a chance to see them in action.

Case-sensitivity

One strict rule—one that occasionally trips me up to this day—is 
that JavaScript is case-sensitive. That means that avariable and 
aVariable are treated as two completely different things. This 
can seem a little tricky when JavaScript’s built-in methods for 
accessing the DOM have names like getElementsByTagName, 
which doesn’t exactly roll off the tip of one’s keyboard.

For the most part, we can expect built-in methods to 
use camel case, capitalizing every word after the first, as in  
querySelector or getElementById.

You can see this rule in action via the console: try entering 
document.getElementById.toString() and you’ll likely get a 
response that mentions native code—the browser recognizes 
this as a built-in method for accessing an item in the DOM. 
Enter document.getElementByID.toString() however—with 
the D in “Id” capitalized—and the browser only returns an error 
(FIG 1.5).

Semicolons	

A statement in JavaScript should almost always end in a semico-
lon, which is a way to tell a JavaScript parser that it has reached 
the end of a command, the same way a period ends a sentence in 
English. This rule is a little flexible: a line break can also signal 
to a parser that it’s the end of a statement, thanks to something 
called Automatic Semicolon Insertion, or ASI.

Now, if you can believe this, programmers are an opin-
ionated group. It won’t take much searching to find endless 

FIG 1.5: So close, yet so far away.

JAVASCRIPT FOR WEB DESIGNERS20



debates over whether to always use a semicolon at the end of 
a statement, or to just save yourself the occasional byte and let 
ASI do its job. Personally, I’m in the former camp—I’d always 
rather be explicit by using a semicolon than risk omitting one 
that I wasn’t supposed to, and I find that it makes code easier to 
read for the next person who comes along and needs to main-
tain it. For now, I’d definitely recommend you do the same. It 
takes a while to get the hang of where semicolons are absolutely 
necessary and where ASI can fill in the blanks, so we’re better 
off erring on the side of caution.

White space

Perhaps weirder still, line breaks are the only form of white 
space—which includes tabs and spaces—that has any real sig-
nificance to JavaScript, and even then it’s only the first one 
that counts. Whether you use fifty line breaks between lines 
of code, or start every line with ten tabs and a space for good 
luck, JavaScript will ignore it all the same. Only the first new-
line, where ASI comes swooping in to assume you’re between 
statements, has any real significance.

JavaScript is complex for sure, but the global rules of the lan-
guage are surprisingly simple—and generally pretty forgiving, 
with a few exceptions. It’s helpful to run through some of these 
rules upfront, and don’t worry if they don’t all make perfect 
sense before we have a chance to see them in action.

Case-sensitivity

One strict rule—one that occasionally trips me up to this day—is 
that JavaScript is case-sensitive. That means that avariable and 
aVariable are treated as two completely different things. This 
can seem a little tricky when JavaScript’s built-in methods for 
accessing the DOM have names like getElementsByTagName, 
which doesn’t exactly roll off the tip of one’s keyboard.

For the most part, we can expect built-in methods to 
use camel case, capitalizing every word after the first, as in  
querySelector or getElementById.

You can see this rule in action via the console: try entering 
document.getElementById.toString() and you’ll likely get a 
response that mentions native code—the browser recognizes 
this as a built-in method for accessing an item in the DOM. 
Enter document.getElementByID.toString() however—with 
the D in “Id” capitalized—and the browser only returns an error 
(FIG 1.5).

Semicolons	

A statement in JavaScript should almost always end in a semico-
lon, which is a way to tell a JavaScript parser that it has reached 
the end of a command, the same way a period ends a sentence in 
English. This rule is a little flexible: a line break can also signal 
to a parser that it’s the end of a statement, thanks to something 
called Automatic Semicolon Insertion, or ASI.

Now, if you can believe this, programmers are an opin-
ionated group. It won’t take much searching to find endless 

FIG 1.5: So close, yet so far away.

21Getting Set Up



Comments

JavaScript allows you to leave comments that are ignored when 
the script is executed, so you can leave reminders and explana-
tions throughout your code. I find this helpful on a day-to-day 
basis: leaving myself pointers and reminders of why things are 
set up a certain way, or comments telling myself that part of the 
code still needs some work. 

Far more important than that, however, is keeping in mind 
that you won’t always be the single owner of a codebase—even 
if you’re not working on a team, there’s a chance that some-
one else may end up making changes to your code someday. 
Well-commented code serves as a roadmap for other devel-
opers, and helps them understand what decisions you made 
and why.

There are two flavors of comment native to JavaScript, one of 
which will be familiar to anyone who’s spent quality time with 
CSS. Multiline comments are handled using the same syntax as 
CSS comments:

/* This is a multi-line comment.

Anything between these sets of characters will be
ignored when the script is executed. This form of
comment needs to be closed. */

JavaScript also allows for single-line comments, which don’t 
need to be explicitly closed. Instead, they close as soon as you 
start a new line.

// This is a single-line comment.

Unexpectedly, single-line comments can wrap to as many 
lines as necessary in your editor, so long as they don’t contain 
a line break—as soon as you press Return to start a new line, 
the comment is closed, and you’re back into executable code. 
The wrapping that might be performed by your code editor—

JAVASCRIPT FOR WEB DESIGNERS22



depending on the editor itself and your settings—is called “soft 
wrapping.” Single-line comments won’t be impacted by soft 
wrapping, since it’s strictly an editor-level convenience.

console.log("Hello, World."); // Note to self: 
should “World” be capitalized here?

WE’RE READY
Now that we know the rules of the game and we’ve set up a 
couple of places to experiment, we’re ready to start learning 
about the building blocks that make up JavaScript. In terms 
of sitting down and writing a script from start to finish, they 
might not seem like they amount to much on their own—but 
the things we’re about to cover in the next chapter are critical 
to understanding how JavaScript treats data.

23Getting Set Up



THINGS ARE ABOUT TO GET REAL. 
By the end of this chapter, you’ll have a sense for the types 

of data you’ll encounter during your JavaScript-writing travels. 
Some types of data will seem self-explanatory, at least on the 
surface: numbers are numbers, strings of text are strings of text. 
Some types of data will veer a little more toward the philosoph-
ical-sounding: true, as a keyword in JavaScript, represents the 
very essence of trueness.

Things go a bit deeper than that, however, and sometimes 
in particularly confusing ways. Numbers can be truthy or falsy, 
while text will always be truthy. NaN—a JavaScript keyword 
meaning “not a number”—is itself something JavaScript con-
siders to be a number. ({}+[])[!+[]+!+[]+!+[]]+(![]+[])
[!+[]+!+[]+!+[]] is perfectly valid JavaScript. Really.

It’s not hard to see where JavaScript gets a reputation for 
being difficult to understand intuitively—the statements above 
read more like a riddle than the rules of a scripting language. 
There are methods to the madness, however, and getting the 
hang of JavaScript’s data types is how we start learning to think 
like JavaScript.

UNDERSTANDING 
DATA TYPES2
JAVASCRIPT FOR WEB DESIGNERS24



JavaScript is a “weakly typed” language, meaning that we 
don’t have to be explicit about whether something should 
be treated as a number or a string of text. Unlike a “strongly 
typed” language—which requires us to define data as a certain 
type—JavaScript infers the meaning from context. This makes 
sense, considering that more often than not, we’ll want 7 to be 
treated as a number and not a string of text.

In the event that we do want something handled as a spe-
cific type, there are a number of ways to perform type coercion, 
which changes the way JavaScript interprets data. Fortunately, 
we don’t need to worry about that yet, so let's take a look at the 
data types themselves.

PRIMITIVE TYPES
We hold some data types to be self-evident, and primitive data 
types are exactly that. Primitive types can’t be reduced any 
further than what they already are: a number is a number, true 
is true. Primitives are the simplest form of data in JavaScript: 
numbers, strings, undefined, null, and true and false.

Numbers

The number type is a set of all possible number values. JavaS-
cript is pretty good at numbers, up to a point. If you punch 7 
into your console and hit return, the result shouldn’t be too 
surprising: the output is 7. JavaScript has acknowledged that 
this is the number seven. You and I, we have done strong work 
with the JavaScript console today.

There are a few special cases under the number umbrella: 
the “not a number” value (NaN), and a value representing 
infinity, which can be either positive (Infinity) or negative   
(-Infinity). If you type either of these into your console and 
press return, you’ll get them echoed back to you just like the 
7—which is really just JavaScript saying, “I am aware of this 
concept.” If you try entering infinity or Nan, however, both 
of those will come back as undefined—remember, JavaScript 
is case-sensitive.

25Understanding Data Types



Likewise, it shouldn’t come as too much of a surprise that 
we can use mathematical operators in JavaScript, which play 
out just the way you might expect. If you enter 2+2 in your 
console, JavaScript will return 4.

A lot of these operators will be familiar, even to those of us 
that just barely scraped by in high school algebra classes (ahem); 
a few operators are more unique to programming (FIG 2.1).

The mathematical Order of Operations applies here: any 
expressions wrapped in parentheses are evaluated first, fol-
lowed by exponents, multiplication, division, addition, and 
subtraction. I bet you never thought you’d be hearing the phrase 
“Please Excuse My Dear Aunt Sally” again, but time and math 
make fools of us all.

2*2-2
2

2*(2-2)
0

FIG 2.1: There won’t be a quiz, I promise.

OPERATOR DESCRIPTION USAGE RESULT

+ Addition 2+2 4

- Subtraction 4–2 2

* Multiplication 2*5 10

/ Division 5/10 2

++ Add one to a number 2++ 3

-- Subtract one from a number 3–– 2

% Return the remainder after  
dividing two numbers

12 % 5 2

JAVASCRIPT FOR WEB DESIGNERS26



You’re not apt to run into Infinity or NaN too often during 
the course of your JavaScript career—at least, not on purpose. If 
you try out 2/0 in the console, assuming your computer doesn't 
collapse into a singularity, JavaScript will return Infinity.

NaN is a special case we’ll see a bit more frequently. Any time 
we try to treat non-numbers as numbers, JavaScript will return 
NaN—for example, if we take the phrase "Hello, World." that 
we tried out in console.log earlier and multiply it by two 
("Hello, World." * 2), we’ll get NaN as a result. JavaScript 
doesn’t know what you’re supposed to get when you multiply 
a word by a number, but it knows for sure that whatever you’d 
end up with wouldn’t be a number.

Strings

Strings of text are quite possibly the simplest data type to under-
stand. Any set of characters—letters, numbers, symbols, and 
so on—between a set of double or single quotes is a “string.”

As a matter of fact, we’ve already been introduced to strings—
when we wrote console.log("Hello, World."); in the con-
sole in the previous chapter, "Hello, World." was a string. We 
would see the same result with single quotes, as in console.
log('Hello, World.'); (FIG 2.2).

FIG 2.2: Double quotes and single quotes give us the exact same result. In your face, 
Strunk & White.

27Understanding Data Types



Single and double quotes are functionally identical as long 
as you pair them properly, and a string using double quotes can 
contain single quotes, or vice-versa (FIG 2.3).

If we omit the quotes, however, the results are very different. 
Without quotation marks, JavaScript attempts to read Hello, 
World. as part of the script rather than as a string of text, and 
throws a syntax error (FIG 2.4).

Strings are refreshingly uncomplicated: just some letters 
and/or numbers inside of a set of quotes. There’s one other 
important facet to strings, though: we can create new ones by 
joining them together, or joining them with a number.

Combining multiple sources into a single string is called string 
concatenation. You can join two or more strings by using a plus sign, 
which pulls double-duty for both mathematical addition and string 
concatenation, depending on its surrounding context (FIG 2.5).

When dealing with strings instead of numbers, + doesn’t 
attempt to perform mathematical addition. Instead, it concate-
nates two data types into a single string. Even though the above 
example contains a number, involving a string at all means 
JavaScript treats 2 as a string as well.

undefined

undefined, as you might expect, is the type for anything that 
isn’t predefined by JavaScript, or defined by us as part of our 
script. You’ve seen examples of this data type already: when we 
were playing around with case-sensitivity in our dev consoles, 
we entered a few things that JavaScript didn’t recognize, and 
got an error back (FIG 2.6).

FIG 2.3: All’s well, so long as our quotes are paired properly.

FIG 2.4: Uh-oh.

FIG 2.5: The sequels are never as good as the originals.

FIG 2.6: We haven’t told JavaScript that sup means anything, and JavaScript is  
lousy at slang.

JAVASCRIPT FOR WEB DESIGNERS28



Single and double quotes are functionally identical as long 
as you pair them properly, and a string using double quotes can 
contain single quotes, or vice-versa (FIG 2.3).

If we omit the quotes, however, the results are very different. 
Without quotation marks, JavaScript attempts to read Hello, 
World. as part of the script rather than as a string of text, and 
throws a syntax error (FIG 2.4).

Strings are refreshingly uncomplicated: just some letters 
and/or numbers inside of a set of quotes. There’s one other 
important facet to strings, though: we can create new ones by 
joining them together, or joining them with a number.

Combining multiple sources into a single string is called string 
concatenation. You can join two or more strings by using a plus sign, 
which pulls double-duty for both mathematical addition and string 
concatenation, depending on its surrounding context (FIG 2.5).

When dealing with strings instead of numbers, + doesn’t 
attempt to perform mathematical addition. Instead, it concate-
nates two data types into a single string. Even though the above 
example contains a number, involving a string at all means 
JavaScript treats 2 as a string as well.

undefined

undefined, as you might expect, is the type for anything that 
isn’t predefined by JavaScript, or defined by us as part of our 
script. You’ve seen examples of this data type already: when we 
were playing around with case-sensitivity in our dev consoles, 
we entered a few things that JavaScript didn’t recognize, and 
got an error back (FIG 2.6).

FIG 2.3: All’s well, so long as our quotes are paired properly.

FIG 2.4: Uh-oh.

FIG 2.5: The sequels are never as good as the originals.

FIG 2.6: We haven’t told JavaScript that sup means anything, and JavaScript is  
lousy at slang.

29Understanding Data Types



If we use typeof—an operator that returns a string indicating 
the type of unevaluated operand—to determine the type of sup, 
we’ll see that it has a type of undefined. sup has no meaning or 
value, so far as JavaScript knows—we never gave it one.

null

null represents a non-value: something that has been defined, 
but has no inherent value. For example: we might define a vari-
able as null with the expectation that it gets assigned a value at 
some point in a script, or assign the null value to an existing 
reference to zero out a previous value.

Booleans

Boolean values—the keywords true and false—represent 
inherent trueness and falseness. They’re concepts you’ll come 
across in any programming language. If we ask JavaScript to 
compare any two values and they come up equal, the entire 
statement evaluates to true—if not, false.

Let’s take a look at our console again, and in doing so gaze 
into the very face of absolute universal truth:

2 + 2 == 4
true

And while we’re at it, let’s use our developer console to put 
some Orwellian newspeak to the test:

2 + 2 == 5
false

Okay, it may not seem quite as dramatic as I wanted it to 
sound, but these kinds of comparisons are the basis for a tre-
mendous amount of scripting logic.

Note that we’re using == to perform a comparison here, 
rather than the = you might have expected: JavaScript sees a 
single equals sign as an attempt to assign something a value, 
rather than performing a comparison between one value and 

JAVASCRIPT FOR WEB DESIGNERS30



another. More on this in a bit—and we’ll discuss comparison 
operators further in the next chapter.

OBJECT TYPES
The concept of “an object” in JavaScript maps nicely to the con-
cept of an object here in the real world. In both cases, an object 
is a collection of properties and methods—that is, traits belonging 
to an object, and functions that the object can perform. In the 
real world, for example, “hammer” is an abstraction of prop-
erties (“handle,” “a weighted striking surface”) and purposes 
(“hitting things”). But the concept of “hammer” is mutable: if we 
were to change the properties (“MC,” “unusual pants,” “cannot 
be touched”) and purposes (“breaking it down”), “hammer” 
comes to mean something altogether different.

An object in JavaScript is the same idea: a named, mutable 
collection of properties and methods. Outside of the primitive 
types listed above, every bit of JavaScript we write is an “object,” 
from the strings and numbers we define, up to the entire doc-
ument itself.

That sounds a little overwhelming, but the specific types of 
objects we’re apt to run into day-to-day are clearly differentiated.

Variables

A variable is a symbolic name for a value. Like so many x’s in 
so many eighth-grade algebra classes, variables in JavaScript act 
as containers for a value that can be any kind of data: strings, 
numbers, elements we’ve retrieved via the DOM, even entire 
functions. They give us a single point of reference for that value, 
to be used in all or part of our script. We can modify the value 
of that variable at any time and in whatever ways we want.

There are two ways to declare a variable, both of which use 
the single equals sign, which performs an assignment rather than 
making a comparison. The simplest way to declare a variable 
doesn’t use much else, really: we specify the identifier, and use 
a single = to assign it a value.

31Understanding Data Types



foo = 5;
5

When we first create a variable, our console acknowledges 
us by parroting back the new variable’s value.

If we now punch in foo and hit enter, we get the same 
result—we’ve made JavaScript aware of a variable named foo, 
and defined its value as the number five. Once defined, the 
behavior of a variable is identical to the data it contains. Check-
ing the type of variable foo using typeof is revealing:

foo = 5;
5

foo;
5

typeof foo;
"number"

foo’s type is now “number,” not “variable.”  As far as 
JavaScript is concerned, the variable foo is functionally identical 
to the number five. That’s not a permanent condition, however: 
we can reuse a variable by assigning it a new value.

foo = 5;
5

foo = 10;
10

We can even reassign a value to a variable using the vari-
able itself:

foo = 100;
100

foo = foo * foo;
10000

JAVASCRIPT FOR WEB DESIGNERS32



Of course, we won’t always know upfront what value our 
variable should contain. The whole idea, after all, is that vari-
ables can represent any number of values in a predictable, 
easy-to-reference package. In the event that we don’t need or 
want our variable to have a starting value, we can still make 
JavaScript aware of it. Using var foo;, we declare a new vari-
able (foo) as undefined, as confusing as that might sound. So 
“foo” is now a word that JavaScript identifies as a variable, but 
without any assigned value. Try this out in your JavaScript 
console and you’ll see what I mean.

var bar;
undefined

bar;
undefined

whatever;
Uncaught ReferenceError: whatever is not defined

We defined bar as a variable, so when we enter it into our 
console, the REPL dutifully parrots its value back to us. That 
value, since we didn’t give it one, is undefined. If we try the 
same thing with a variable we haven’t defined—whatever, in 
this case—JavaScript throws an error.

Note that var up there? It's not required that you use 
the var keyword to declare a variable if you're assigning it 
a value immediately, but for reasons I’ll explain soon, it’s a 
good idea to always declare your variables with the var 
keyword even when it's not required. Similarly, though 
it isn’t always required by the rules of JavaScript, it’s best 
to always end variable assignments with a semicolon. 

var foo = 5;
undefined

Don’t sweat your console’s undefined response after assign-
ing a value to an identifier—the JavaScript engine doesn’t actu-

33Understanding Data Types



ally have anything to output in response to tasks like declaring 
a variable, so we get undefined in return.

We can also declare more than one variable at once. As with 
so many things in JavaScript, we have a couple of options for 
defining multiple variables, using two different but equivalent 
syntaxes. The first uses a single var keyword and splits the sets 
of variable names and assigned data with commas (ending with 
a semicolon, of course):

var foo = "hello",
bar = "world",
baz = 3;

The second method uses individual var keywords:

var foo = "hello";
var bar = "world";
var baz = 3;

There are no catches, in this case. These two syntaxes work 
the exact same way, and choosing one over the other is entirely 
a matter of personal preference. This, of course, means that it is 
a hotly contested subject in JavaScript developer circles.

Now, it would be irresponsible of me to foist my personal 
opinion on you here, reader, so I’ll leave it at this: always adhere 
to the existing code conventions of a project, rather than mixing 
and matching. On a brand-new project, use whichever syntax 
you find the most comfortable, but keep an open mind—we 
have trickier problems to solve than fighting over personal 
preferences. And when in doubt: do the thing that I like best, 
because I am right.

No, really, use whichever one you find more comfortable.
Pretty sure I’m right, though.

Identifiers

The name we give a variable is called an identifier.
Like everything in JavaScript, identifiers are case-sensitive, 

and come with a few special rules, as well:

JAVASCRIPT FOR WEB DESIGNERS34



•	 They must start with a letter, underscore, or dollar sign—not 
a number. 

•	 They can’t contain spaces. 
•	 They can’t contain special characters (! . , / \ + - * =).

There are a set of words in JavaScript that can’t be used as 
identifiers, like null, for example. These are called keywords—
words that already have an immutable meaning to JavaScript, 
or are set aside just in case they get added to JavaScript one day:

abstract boolean break byte case catch char class 
const continue debugger default delete do double 
else enum export extends false final finally 
float for function goto if implements import in 
instanceof int interface long native new null 
package private protected public return short 
static super switch synchronized this throw throws 
transient true try typeof var void volatile while 
with

That’s a scary block of words, but this isn’t something you 
need to have committed to memory—I certainly don’t. It does 
make a good case for an editor with syntax highlighting, though, 
which can help you avoid mysterious-seeming errors when 
assigning an identifier to a variable (FIG 2.7).

FIG 2.7: Syntax highlighting can make it 
easier to catch errors on the fly.

35Understanding Data Types



Outside of these rules, an identifier can contain any 
combination of letters, digits, and underscores. It’s a 
good idea to use identifiers that are brief (totalCost vs.  
valueOfAllItemsIncTaxAndShipping) and easy to understand 
at a glance (selectedValue vs. v1). The “foo,” “bar,” and “baz” 
that I’ve been using in my examples are lousy identifiers—the 
words have no meaning whatsoever, so coming across them 
in a script would give you no clues as to the nature of the data 
they contain. At the same time, we should avoid identifiers 
that describe their potential values in too much detail, since 
we may not always be able to immediately predict the values 
a variable will contain. A variable originally named miles may 
need to contain a value in kilometers one day—confusing for 
the developers who end up maintaining that code, ourselves 
included. distance works much better.

Variable scope

We’ll get into this more when we look at functions, but we 
can’t talk about variables without discussing something called 
variable scope.

Think of variable scope as the section of your source code 
where you’ve assigned something an identifier. Outside of that 
section, that variable is not defined, and the identifier may be 
reused for something else. JavaScript applications can be huge, 
with tens of thousands of lines of code being parsed and exe-
cuted. Because variables have their own scope, we can elect to 
make them available to the entire application or constrained to 
individual sections of our code, so we don’t have hundreds of 
variables potentially tripping us up throughout an application. 
If we had to keep a mental inventory of what identifiers were 
already in use so we didn’t run the risk of accidentally reusing or 
redefining a variable, we would need those special programmer 
robot-brains we talked about at the outset.

There are two kinds of variable scope: local and global. A 
variable defined outside of a function is global. And because 
global variables are, well, global, they can be accessed anywhere 
in the entire application.

JAVASCRIPT FOR WEB DESIGNERS36



A variable defined inside a function can be either local or 
global, depending on how we define it—which really comes 
down to whether we declare it by using the keyword var. Inside 
a function, var declares a variable in that function’s local scope, 
but omitting var means that variable should be global—in other 
words, exposed to the entire application.

(function() {
  var foo = 5;
}());
undefined

console.log( foo );
Uncaught ReferenceError: foo is not defined

Variable scope is a complicated topic, and we’ll get into the 
gritty details when we start learning about functions. For now, 
just know that it’s a good idea to always define your variables 
using var. Always using var means local variables stay local 
and global variables stay global—which means we don’t spend 
hours of debugging time trying to track down the function that 
unexpectedly changed a global variable’s value. And when the 
time comes to expose a local variable to the global scope, we’ll 
talk through better ways of doing it than omitting var.

Arrays

Arrays aren’t all that different from variables, with one major 
exception: while a variable contains a single value, an array 
can contain multiple values, like a list. The syntax is similar to 
variables’ syntax, too:

var myFirstArray = [ "item1", "item2" ];
undefined

This should look pretty familiar: a var keyword, followed 
by an identifier that we think up, and then a single equals sign 
to perform an assignment. All the same identifier rules apply 

37Understanding Data Types



here, too—in fact, all the rules of variables apply to arrays, 
including scope.

Things differ a little beyond that, though: instead of  
pointing the identifier at a single data type, we create a  
list—in this example, a pair of strings—inside a set of  
square brackets and separated by a comma. Remember that 
spaces inside the array don’t matter—they’re just a matter 
of personal preference. var myFirstArray = [ "item1", 
"item2" ]; is 100% identical, so far as JavaScript cares, to  
var myFirstArray=["item1","item2"];. I just find the former 
a little easier to read.

Just as with variables, arrays can be made up of any data types:

var myFirstArray = [ "item1", 2, 3, true, "last item" ];
undefined

When we punch that identifier into our developer console, 
the console parrots back the value, just like a variable:

var myFirstArray = [ "item1", 2, 3, true, "last item" ];
undefined

myFirstArray
["item1", 2, 3, true, "last item"]

We likely won’t need to access the entire array all at once, 
though. We’re much more likely to use an array to package up 
several items of related data, with intent to access them individ-
ually. We access them using indexes: numbers that correspond 
with the positions within the array.

var mySecondArray = [ "first", "second", "third" ];

undefined

mySecondArray;
["first", "second", "third"]

JAVASCRIPT FOR WEB DESIGNERS38



mySecondArray[ 0 ];
"first"

mySecondArray[ 1 ];
"second"

mySecondArray[ 2 ];
"third"

You may note that JavaScript breaks with an easy assumption 
here: while you might expect the first item in the array to corre-
spond with the index 1, JavaScript is zero-indexed, which means 
that JavaScript starts indexing at 0 and counts up from there.

When we reference a position within an array using an 
index, it isn’t much different from working with variables: any 
reference to an array position takes on the data type of the data 
it contains—and just like a variable, we can reassign data to a 
given array position using a single equals sign.

var mySecondArray = [ "first", "second", "third" ];

mySecondArray[ 2 ];
"third"

typeof mySecondArray[ 2 ];
"string"

mySecondArray[ 2 ] = 3;
3

mySecondArray;
["first", "second", 3]

typeof mySecondArray[ 2 ];
"number"

mySecondArray[ 3 ] = "numero cuatro";
"numero quattro"

39Understanding Data Types



mySecondArray;
["first", "second", 3, "numero cuatro"]

So far, we’ve only used brackets when initializing an array—
and we’ll always want to use brackets when accessing informa-
tion in an array—but there’s an alternative method for initial-
izing an array:

var myFirstArray = new Array( "item1", "item2" );
undefined

myFirstArray;
["item1", "item2"]

As we’ve used them here, with strings, there’s really no differ-
ence between using brackets and using the new Array() syntax.

Likewise, we can use either the bracket syntax or the  
new Array() syntax to initialize an array with no defined items, 
just like we can initialize a variable but leave it undefined. To do 
this, we use either an empty set of brackets or the new Array() 
syntax with nothing in the parentheses:

var arrayThree = [];
undefined

var arrayFour = new Array();
undefined

Again, these are functionally identical: both syntaxes initial-
ize an empty array.

There is one thing that the new Array() syntax can do that 
brackets can’t, and that’s initialize an array with a set number 
of items—even when those items are undefined:

var threeItemArray = new Array( 3 );
undefined

threeItemArray
[undefined × 3]

JAVASCRIPT FOR WEB DESIGNERS40



All this means is that a new array has been created, with three 
as-yet-undefined items. Beyond that, the behavior is the same 
as the arrays we’ve seen so far: you’re not limited to those three 
items, and you can set and access information the exact same way.

This syntax can get a little confusing, however: you’re pass-
ing the new Array() syntax the number of items you want in 
the array the same way you’d pass it the data you wanted in the 
array. That means you can end up with very different results 
from the bracket syntax when you’re storing number data types. 
JavaScript is smart enough to know that multiple numbers in 
the new Array() parentheses mean you’re creating an array 
of numbers:

var numberArray = [ 777, 42, 13, 289 ];
undefined

numberArray;
[777, 42, 13, 289]

var otherNumberArray = new Array( 777, 42, 13, 289 );
undefined

otherNumberArray;
[777, 42, 13, 289]

But if you’re looking to initialize an array containing a single 
item—and that item is a number type—we get very different 
results with the two different syntaxes. Bracket notation works 
as we might expect—an array containing a single item with the 
value we assigned it:

var numberArray = [ 777 ];
undefined

numberArray;
[777]

numberArray[ 0 ];
777

41Understanding Data Types



With the new Array() syntax, things get weird. We end up 
with an array containing seven hundred seventy-seven unde-
fined items.

var otherNumberArray = new Array( 777 );
undefined

otherNumberArray;
Array[777]

otherNumberArray[ 0 ];
undefined

Now, I’ll be perfectly honest: I’ve never needed to initialize 
an array with a given number of undefined items right off the 
bat—your mileage may vary, of course, but I get by just fine 
with bracket notation.

Once defined, arrays come with a number of associated 
methods for navigating and changing their data. For example, 
the .length property on an array describes the number of 
items in that array:

var theFinalArray = [ "first item", "second item", 
"third item" ];

undefined

theFinalArray.length;
3

And since the index itself is a plain ol’ number data type, we can 
get a little creative with how we access information in an array:

var theFinalArray = [ "first item", "second item", 
"third item" ];

undefined

JAVASCRIPT FOR WEB DESIGNERS42



// Get the last item in the array:
theFinalArray[ theFinalArray.length - 1 ];
"third item"

Here we’re using the .length of the array to find the index 
of the last item. Since an array can be any length, we can’t just 
use a number to get to the last item. We can use the .length 
property to get a count of all the items in the array, so we know 
how many items it contains. JavaScript is zero-indexed, though, 
so we can’t just use the array’s length—there are three items in 
the array, but the indexes start counting at zero. Easy enough 
to deal with: we just subtract one from the array’s length—a 
number data type—to get the index of the last item.

Objects and Properties

An object can contain multiple values as properties. Unlike an 
array that accepts a set of data types and assigns each item a 
numbered index, an object’s properties are named using strings.

var myDog = {
  "name" : "Zero",
  "color" : "orange",
  "ageInYears" : 3.5,
  "wellBehaved" : false
};
undefined

Each property is made of up a key/value pair. The “key” 
in “key/value” is a string we define that points to a value—as 
with naming a variable, we want our keys to have names that 
are predictable, flexible, and easy to understand. In the above 
example, the keys for each property of the myDog object are 
name, color, ageInYears, and wellBehaved, and the respective 
values are the strings Zero and orange, the number 3.5, and 
the Boolean false.

43Understanding Data Types



The properties of an object can themselves be treated as 
objects with properties of their own, allowing us to bundle 
up a tremendous amount of information in a highly porta-
ble package.

var myDog = {
  "name" : {
    "first" :"Zero",
    "middle" : "Baskerville",
    "last" : "Marquis"
  }, 

  "color" : "orange",
  "ageInYears" : 3,
  "wellBehaved": false
};
undefined

Remember that the whitespace in these examples—the 
indentation, line breaks, and spaces around the colons—
won’t matter to JavaScript. Those are just there to keep things 
human-readable.

Defining an object

There are two ways to define a new object. One is with the 
new keyword, whose syntax shouldn’t be entirely unfamiliar 
at this point:

var myDog = new Object();
undefined

The second way is with object literal notation: 

var myDog = {};
undefined

JAVASCRIPT FOR WEB DESIGNERS44



Both of these work a lot like declaring a variable: we use the 
var keyword, followed by an identifier and a single equals sign.

These two methods of defining an object work the same way, 
except for one major difference. The new keyword requires us 
to first define an object, then start filling it with data:

var myDog = new Object();
undefined

myDog.nickname = "Falsy";
"Falsy"

Object literal notation allows us to define and assign data to 
an object all at once:

var myDog = {
  "nickname": "Falsy"
};
undefined

You’ll find that a lot of developers favor object literal notation 
for the sake of simplicity, and we’ll be doing the same in this 
and future chapters.

Accessing and changing properties

Once we’ve defined an object using either of the above meth-
ods, there are two ways to access and change the information 
inside an object: dot notation and bracket notation. 

To access information in an object’s property using dot 
notation, you use a period between the object identifier and 
the property key.

var myDog = {
  "name": "Zero"
};
undefined

45Understanding Data Types



myDog.name;
Zero

Bracket notation uses a set of brackets and a string that points 
to the key we’re looking to access, just like the way we’d use 
an index in an array. Unlike dot notation, we use a string data 
type to point to our keys—so, we need to wrap name in quotes.

var myDog = {
  "name": "Zero"
};
undefined

myDog[ "name" ];
Zero

The reason bracket notation requires a string is the reason 
bracket notation exists at all: in complex scripts, we might 
need to programmatically access certain keys based on custom 
logic that we’ve coded. In order to do that, we may need to put 
together a custom string from strings, numbers, variables, and 
so on. Say we had a script that randomly selected one of the 
keys in the following object:

var cars = {
  "car1" : "red",
  "car2" : "blue",
  "car3" : "green"
}
undefined

We might have a variable that contains a number between 
one and three, and use that to create a string that points to 
one of those three keys. There are plenty of ways to generate 
a random number with JavaScript, but for the sake of keeping 
things uncomplicated: we’ll just use the number two, and create 
a concatenated string that reads car2.

JAVASCRIPT FOR WEB DESIGNERS46



var cars = {
  "car1" : "red",
  "car2" : "blue",
  "car3" : "green"
}
undefined

var carKey = "car" + 2;
undefined

carKey
"car2"

cars.carKey
undefined

We won’t be able to use dot notation in a situation like this, 
since JavaScript isn’t going to treat carKey like a variable. Given 
how dot notation syntax works, JavaScript thinks carKey is 
the identifier of the key that we’re looking for, not the string 
it contains.

Bracket notation, however, expects a string—and since  
carKey contains a string, the following works just fine:

var cars = {
  "car1" : "red",
  "car2" : "blue",
  "car3" : "green"
}
undefined

var carKey = "car" + 2;
undefined

carKey
"car2"

cars[ carKey ];
"blue"

47Understanding Data Types



You’ll find a lot of ways to get clever with bracket notation 
during the course of your JavaScripting career. Unless you need 
to get clever, though, dot notation is the simpler of the two 
syntaxes, and I find it much easier to read at a glance.

Functions

A function is a block of reusable code that allows us to perform 
repetitive tasks without repeating the same code throughout 
a script. Instead, we use an identifier to reference a function 
containing that code, and pass the function any information it 
needs to perform a task for us.

In fewer words, a function is an object that does something, 
rather than just holding a value.

Defining a function involves a little more code than we’re 
used to, though the first few parts shouldn’t be too surprising. 
As usual, var defines the scope, then we define an identifier of 
our choosing, and use a single equals sign to assign that iden-
tifier a value. Instead of a simple string, number, Boolean, etc., 
we follow the equals sign with the keyword function and a set 
of parentheses. Then, between two curly braces, we put all the 
code we want that function to execute whenever we call it. As 
usual, we end the statement with a semicolon.

var whatup = function() {
  console.log( "Hello again, world." );
};
undefined

If we paste this code into our console: nothing happens. No 
Hello again, world.—at least, not yet. So far, all we’ve done 
is define a function with the identifier whatup that, when called, 
will output the sentence, “Hello again, world.”

If we type whatup into our console, your dev console will 
either respond with function whatup() or the entirety of the 
function’s code, depending on the browser—in either case, this 
is just the browser acknowledging that it knows about a func-
tion with that identifier. In order to actually execute the function, 
we have to call it using the identifier and a pair of parentheses:

JAVASCRIPT FOR WEB DESIGNERS48



var whatup = function() {
  console.log( "Hello again, world." );
};
undefined

whatup;
function whatup()

whatup();
Hello again, world.

In their simplest form, functions might not seem all that 
useful, since we’ll rarely want to execute the exact same lines of 
code—leading to the exact same output—over and over again. 
The real power of functions lies in passing them information 
for that code to act upon, leading to different results. The paren-
theses that follow the function’s identifier can do more than just 
tell the browser to execute the function we’ve assigned to the 
identifier whatup: they can be used pass information along to 
the code inside the function, in the form of arguments.

var greet = function( username ) {
  console.log( "Hello again, " + username + "." );
};
undefined

By adding username between the parentheses when defining 
a function, we’re saying the function should create a variable 
named username, and that variable should contain whatever 
value we pass along between the parentheses when we exe-
cute the function. In this case, the function is expecting us 
to pass along a string that gets concatenated into our “hello 
again” greeting:

var greet = function( username ) {
  console.log( "Hello again, " + username + "." );
};
undefined

49Understanding Data Types



greet( "Wilto" );
Hello again, Wilto.

Of course, we’re not doing much to validate the data being 
passed to the function—and we’ll get into that later on—but 
for now, string concatenation is pretty resilient thanks to 
JavaScript’s type coercion. Even if we pass along another data 
type, things generally work as expected.

var greet = function( username ) {
  console.log( "Hello again, " + username + "." );
};
undefined

greet( 8 );
Hello again, 8.

greet( true );
Hello again, true.

Things do get a little weird if we omit the argument alto-
gether, though:

var greet = function( username ) {
  console.log( "Hello again, " + username + "." );
};
undefined

greet();
Hello again, undefined.

Since we didn’t populate username with any information—
but JavaScript was aware of the identifier—username was an 
undefined data type. Thanks to type coercion, the undefined 
data type became the string "undefined" Not the most elegant 
way to phrase things, but not inaccurate either—the function 
is greeting someone whose name we never defined, after all.

One of the more common—and powerful—uses of functions 
is to provide you with a packaged, reusable method of calcu-

JAVASCRIPT FOR WEB DESIGNERS50



lating something. I don’t mean that in a strictly mathematical 
sense, though you can certainly do that as well. By setting a 
function up to “return” a value, we allow a function to be treated 
the same way as we would treat a variable: as a container for 
data that behaves just like the data it contains. 

Functions can potentially return—and behave like—the final 
result of infinitely complex logic rather than data that we’ve 
hand-defined. We don’t cover infinitely complex logic until next 
chapter, so for now we’ll have our function return something 
relatively simple: the sum of two values.

function addTwoNumbers( num1, num2 ) {
  return num1 + num2;
}
undefined

addTwoNumbers( 4, 9 );
13

typeof addTwoNumbers( 2, 2 );
"number"

To go one step further, we can even assign a function with 
a return value to a variable:

function addTwoNumbers( num1, num2 ) {
  return num1 + num2;
}
undefined

var sum = addTwoNumbers( 2, 3 );
undefined

sum
5

typeof sum
"number"

51Understanding Data Types



It’s important to keep in mind that using the return keyword 
means that the final purpose of a function is to return a value. If 
we include any code inside a function after a return statement, 
that code is never executed.

function combineStrings( firstString, secondString ) {
  return firstString + secondString;
  console.log( "Hello? Can anyone hear me?" );
}
undefined

combineStrings( "Test", " strings" );
"Test strings"

Since a return statement comes before console.log, the 
console.log is never executed. In fact, your editor might even 
highlight it as an error.

Pretty much everything is an object

These are the common object types you’ll run into during your 
adventures in JavaScripting. While we haven't used them in ter-
ribly complex ways yet, they combine to make up the entirety 
of JavaScript itself. From top to bottom, JavaScript is made of 
predefined objects that behave just like the custom ones we’ve 
been defining here.

Under certain conditions, everything but null and undefined 
can be considered objects—even strings, which are arguably 
the simplest data type of them all. A new string comes with 
methods and properties built in—just like arrays—even though 
all we did was define a snippet of text:

"test".length
4

Technically this string itself isn’t an object—it doesn’t have 
any methods or properties of its own. When we ask for the 
value of the length property, though, JavaScript knows what 

JAVASCRIPT FOR WEB DESIGNERS52



we mean—it has a list of predefined methods and properties 
that it applies to all strings.

It that a necessary distinction? Not at this point, no; in fact, 
it’s a little confusing. But the further you dig into the makings 
of JavaScript itself, the more sense that distinction will start to 
make. Until then, you’re likely to see this behavior described 
much more succinctly whenever the subject of what is and isn’t 
a JavaScript object comes up: “everything is an object...kinda.”

Now that we’ve got a feel for some of the building blocks 
that will make up our scripts, we can start writing some logic 
around them. In other words: now that we understand the 
basics, we can start writing scripts that do things—things apart 
from blindly chucking text into our developer console, that is.

By default, a browser “reads” a script the same way you 
would read this page in English: from left to right and from 
top to bottom. Control flow statements are used to control what 
portions of our code are run at a given time, and whether 
they’re executed at all. 

It sounds complicated at first, but it breaks down to a hand-
ful of very simple statements that allow us to do amazingly 
complex things in concert. For our purposes, control flow 
statements fit pretty neatly into two categories: conditional 
statements and loops. That's what we'll be digging into in the 
next two chapters.

53Understanding Data Types



CONDITIONAL STATEMENTS are a type of control flow con-
cerned with logic: they determine when and where to execute 
code, based on conditions you specify. 

if/else STATEMENTS
Conditional statements are almost entirely some variation on 
“given X, do Y.” The most common example of this—and one 
nearly ubiquitous in terms of any programming language—is 
the if/else statement. Saying “if this, do that” is about as 
uncomplicated as a logical statement gets, but by the end of this 
chapter you’ll see how something so simple on the surface can 
make up the lion’s share of logic in our scripts.

if

In its most simple form, an if statement will execute whatever 
code you specify between a set of curly braces, but only if the 

CONDITIONAL 
STATEMENTS3
JAVASCRIPT FOR WEB DESIGNERS54



contents of the parentheses that follow the if keyword evaluate 
to true.

From the previous chapter we know that JavaScript returns 
true for 2 + 2 == 4, if we punch it into our developer console. 
Instead of putting that alone in our console, let’s try it out in 
our very first if statement. Remember that a single equals sign 
(=) is used to assign values, while two (==) equals signs are used 
to perform a basic comparison.

if( 2 + 2 == 4 ) {
  console.log( "Hi there." );
}
Hi there.

Nothing too surprising here: “Hi there.” appears in our 
developer console. If we enter a statement that we know to be 
false, the line containing console.log—and any code we put 
between those curly braces—will be skipped.

if( 2 + 2 == 5 ) {
  console.log( "Hi there." );
}
undefined

Now, this doesn’t seem terribly useful when we’re entering 
statements that we already know to be true or false, but the 
purpose of an if statement isn’t just to periodically make sure 
the rules of mathematics still apply. Considering that JavaScript 
objects can contain all manner of complex data that we’ll need 
to act on in different ways throughout a script—and remem-
bering that objects are treated exactly the same as the data they 
contain—we can make some incredibly complex decisions 
about the flow of a script using simple if statements. For now, 
let’s just initialize a single variable containing a number data 
type, so we can experiment a little.

55Conditional Statements



var maths = 5;

if( maths == 5 ) {
  console.log( "This number is five." );
}
This number is five.

Since if blindly evaluates the contents of the two paren-
theses that follow it for truth, we don’t always have to make a 
specific assertion there—we can use it to check a Boolean value 
the same way.

var foo = false;

if( foo ) {
  /* Any code placed here will never execute, unless 

you change `foo` to `true` */
}

else

else is used to run alternate lines of code, in the event that 
the contents of an if evaluate to false. The else keyword 
follows the closing curly brace for the if statement, and is 
followed by a set of curly braces that contain whatever code 
should run in the event that the if code doesn't run. We don’t 
need a set of parentheses here, since we’re not evaluating any 
new data—we're just taking a different action, depending on 
the conditions of the if.

var maths = 2;

if( maths > 5 ) {
  console.log( "Greater than five." );
} else {
  console.log( "Less than or equal to five." );
} 

Less than or equal to five.

JAVASCRIPT FOR WEB DESIGNERS56



else if

There’s a shorthand for stringing together a number of if state-
ments: else if. While it isn’t necessarily the neatest way of per-
forming complex comparisons, it’s definitely worth knowing.

if( lunch == "gravel" ) {
  console.log( "That isn’t food.");
} else if ( lunch == "burrito" ) {
  console.log( "A burrito is an excellent choice." );
} else {
  console.log( "It might not have been a burrito,  

  but at least it wasn’t gravel." );
}

This script performs a series of tests against the variable 
lunch: the first if checks to make sure lunch does not, in fact, 
have a value of "gravel"—and having passed this critical lunch-
time test, we can now see whether it has a value of "burrito", 
or—with the final else—none of the above.

else if isn’t a JavaScript keyword in the same way that if 
and else are individually—else if is more of a syntactical 
workaround, a shorthand for multiple nested if/else state-
ments. The code above is structurally identical to the following:

if( lunch == "gravel" ) {
  console.log( "That isn’t food.”);
} else {
  if ( lunch == "burrito" ) {
    console.log( "A burrito is an excellent choice." );
  } else {
    console.log( "It might not have been a burrito,  

    but at least it wasn’t gravel.” );
  }
}

Whether using else if or nesting multiple if/else state-
ments, this isn’t the easiest code to read and understand. There 

57Conditional Statements



are much better ways of performing multiple comparisons in a 
single go, and we’ll discuss some of those a little later.

COMPARISON OPERATORS
We wouldn’t get a lot of use out of conditional statements if all 
we could do with them is test whether two values are equal. 
Fortunately—and perhaps expectedly, at this point—there’s a 
lot more we can do with a few simple conditional statements. 
You saw a little of this earlier when we used an if to determine 
whether an identifier had a number value greater than five: con-
ditional statements can be used to compare all kinds of values 
in all kinds of ways, all by replacing the == we’ve been using in 
our comparisons so far.

Equality

I’ve mentioned a couple of times that we should use == for 
comparisons, but that isn’t—and this awful pun will only make 
sense in a little while—strictly true.

JavaScript provides us with two different approaches to 
comparison: the == we’ve been using so far, and ===, which is 
the “strict equals.” Two equals signs together perform a "loose" 
comparison between two values, which means that typing 
2 == "2" into our developer console will give us true, even 
though we’re comparing a number to a string. JavaScript is 
smart enough to coerce two dissimilar data types to matching 
ones when a comparison is performed with ==, and make a 
guess at what we meant to compare.

2 === "2", on the other hand, gives us back false—no type 
coercion is performed behind the scenes when a comparison is 
made using ===. The two values being compared have to be not 
only equal, but also of the same type—they have to be identical.

If you think that makes == feel a little too magical for its 
own good, you’re right—developers have a strong preference 
for using === whenever possible, as it does away with any 
ambiguity that might result from auto-coercion.

JAVASCRIPT FOR WEB DESIGNERS58



Truthy and falsy

There’s one potentially useful thing == gets us that === doesn’t: 
the ability to divine “truthy” and “falsy” values.

Those aren’t strangely consistent typos: everything in Java-
Script can be coerced to a true or false Boolean value when 
using the non-strict comparison operator.

This sounds a little confusing, but you won’t have to main-
tain a spreadsheet of which values are truthy and which are 
falsy—they follow a clear line of reasoning: “If something, 
truthy; if nothing, falsy.” For example, 0 is a falsy value—like-
wise null, undefined, NaN, and an empty string (""). Everything 
else is truthy—a string, a number, and so on.

The uses for this might not be immediately obvious, but 
imagine a situation where you’re writing a function that outputs 
a string—like the ones we used when we were first covering 
string concatenation:

function greetUser( name ) {
  console.log( "Welcome, " + name + "!" );
}

greetUser( "Muscles McTouchdown" );
Welcome, Muscles McTouchdown!

If you remember, omitting the argument containing the 
user’s name didn’t result in an error since JavaScript is aware 
that the name variable exists, but the undefined value gets 
coerced to a string.

greetUser();
Welcome, undefined!

That isn’t particularly desirable behavior; I personally 
wouldn’t be too keen on being called “undefined.” Fortunately, 
we can use an if/else statement to tailor the output a little:

59Conditional Statements



function greetUser( name ) {
  if( name ) {
    console.log( "Welcome, " + name + "!" );
  } else {
    console.log( "Welcome, whoever you are!" );
  }
}

By default, JavaScript evaluates the contents of those paren-
theses in a way that coerces to a Boolean value—it looks for 
truthy and falsy values, and a string is a truthy value. Now if 
we try out this new function without passing along a name as 
an argument:

greetUser( "Mat" );
Welcome, Mat!

greetUser();
Welcome, whoever you are!

It works!
This function is a little clunky, though. Instead of having 

two places where this function writes to the console (or later to 
the page, to another part of our script, etc.), our code would be 
better organized if we could reduce these two mostly redundant 
console.log calls to a single one. For whoever ends up main-
taining our code after us—and for our own sanity—it’s a good 
idea to keep your scripts as terse as possible. You’ll frequently 
see this concept referred to as DRY, which stands for don’t 
repeat yourself. If you have to change something in your code 
later, you’re better off only needing to do so in one place. In our 
example, it might be as simple as changing “Welcome” to “Hi,” 
but, in a sufficiently complex script, it would be impossible to 
keep a mental inventory of all the places you’d need to make 
redundant changes. Keeping our code DRY means we’re closer 
to following a single path through our code.

JAVASCRIPT FOR WEB DESIGNERS60



So in our function, instead of two lines outputting different 
strings to the console, we’ll conditionally tailor the string itself 
and output the final result at the end.

function greetUser( name ) {
  if( name === undefined ) {
    name = "whomever you are";
  }
  console.log( "Welcome, " + name + "!" );
}

Much more succinct. If name doesn’t have a value, we give 
it one—rather than relying on truthy/falsy coercion when we 
already know we’re dealing with a potentially undefined vari-
able, we check for that specifically. Then, by the time we reach 
the console.log statement, we know name is defined.

One of the ways I keep the complexity of my own code in 
check is stepping through it in plain English. Previously, our 
function did the following:

If name has a truthy value, output a string containing name to 
the console, but if name has a falsy value, output an alternate 
string to the console. 

That’s as awkward to say out loud as it is to read in the 
code itself. Compare that to the way we’d walk through our 
new function:

If name is undefined, define it. Output a string containing name 
to the console.

Much better—and congratulations on your first JavaS-
cript refactor.

Inequality

! is called a logical NOT operator, which means that it negates 
whatever immediately follows it:

61Conditional Statements



true
true

false
false

!true
false

When we use the logical NOT operator (!) in front of another 
data type—like a number or a string—it reverses the truthy/
falsy value of that data.

"string"
"string"

!"string"
false

0
0

!0
true

The same way == and === return a true value if the two val-
ues being compared are loosely or strictly equal, the != and !== 
operators return a true value if the two values being compared 
aren’t equal. That’s a little hard to picture in text, but makes a 
lot more sense in the context of an if statement.

var foo = 2;

if( foo != 5 ) {
  console.log( "`foo` is not equal to five" ); 
}

Just like with ==, != attempts to coerce the data types being 
compared so they match. If we use != to compare the number 

JAVASCRIPT FOR WEB DESIGNERS62



2 to the string "2", JavaScript considers the two to be equal—so 
the result is false.

2 != "3"
true

2 != "2"
false

Relational operators

Relational operators are a little more intuitive than the equality 
operators (FIG 3.1).

These work just the way you might expect—no catches, 
no crazy negation operators to mull over. You’ll use these to 
compare one number value to another:

3 > 1
true

3 < 1
false

10 >= 5
true

5 >= 5
true

FIG 3.1: A quick rundown of relational 
operators. 

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

63Conditional Statements



var bikeName = "Bonneville";
if( bikeName.length <= 10 ) {
  console.log( "There are at least ten characters in  

  this bike’s name." );
}

LOGICAL OPERATORS
if/else statements can do a lot of work using only what we 
know so far, but logical operators allow us to form even more 
complex logic by chaining comparisons together in a single 
expression. You’ve already met one of the logical operators, the 
logical NOT (!) that negates any value that follows it, but ! is 
the odd operator out when compared to the other two: logical 
OR (||) and logical AND (&&).

|| and && allow you to evaluate multiple values within the 
same expression: multiple comparisons separated by || mean 
the entire expression will return true if any of the expressions 
evaluate to true, while comparisons separated by && mean 
that the expression will only return true if all the expressions 
evaluate to true. This is another tough one to visualize without 
seeing it in action, so back to the dev console we go:

5 < 2 || 10 > 2
true

Five obviously isn’t less than two—that statement alone 
would never evaluate to true. Ten is greater than two, how-
ever—and since we’re using a logical OR between the two 
comparisons, this entire statement evaluates to true.

10 > 5 && "toast" === 2
false

Ten is greater than five, sure—that part of the expression is 
true. But the string toast clearly has nothing to do with the 
number two; they’re not equal, and certainly not strictly equal. 
Since we’re using the logical AND between these two expres-

JAVASCRIPT FOR WEB DESIGNERS64



sions and one of them returned false, this entire statement 
evaluates to false.

Grouping expressions

Multiple expressions separated by && and/or || (get it? “and/
or?”) will be evaluated from left to right. In the following state-
ment, JavaScript never gets as far as evaluating the number of 
characters in myString.

2 + 2 === 9 && "myString".length > 2
false

Since JavaScript saw an expression that returned false fol-
lowed by a logical AND, the entire statement couldn’t possibly 
be true. The same goes for a logical OR:

2 + 2 !== 9 || "myString".length > 2
true

Since the first expression evaluates to true and is then fol-
lowed by a logical OR, there’s no need for JavaScript to continue 
evaluating the statement—the whole thing evaluates to true 
right away.

We can change the way this evaluation behaves using paren-
theses, and thus do we creep back toward algebra, in a way. 
We’ll start with a set of three statements that evaluates to true 
all together, and we’ll use Booleans so we can see it all the way 
JavaScript does:

false && true || true  
true

The first thing JavaScript looks at here is whether false 
&& true evaluates to true, which it doesn’t. true && true 
would, sure, but “false AND” means that the statement is cer-
tain to return false. But following that is a logical OR—so 
having evaluated the first half of the statement to false, Java-
Script is now evaluating the second half of the statement as  

65Conditional Statements



false || true. Since we’re using a logical OR and one of the 
values is true, this entire statement—read left to right—is true.

If we add a set of parentheses around the second part of 
the statement, however, we change the way they’re evaluated:

false && ( true || true )
false

Now the first thing JavaScript evaluates is still false &&, but 
the parentheses mean everything afterwards is a single expres-
sion to be evaluated—not three things to evaluate, but two. 
Since the left-hand side of the logical AND is false, evaluation 
stops there. “false AND” can never possibly return true, so 
with a single pair of parenthesis, we’ve changed this statement 
to false.

Got a headache yet? I’m not far behind you, and I do this stuff 
all day. That’s why I’m in the habit of using parentheses to clarify 
how JavaScript evaluates these complex statements as much as 
I use them to alter it. Now that we know JavaScript evaluates 
expressions wrapped in parentheses as a single expression, that 
first statement—the one that evaluated to true—might be a little 
easier to read when written like this:

( false && true ) || true
true

Think back to that convoluted else if example earlier on. 
Now that we can perform more advanced comparisons within 
the span of a single if statement, we can do away with a lot 
of the complexity, even when we add more functionality—for 
example, tacos:

var lunch = "tacos";
if( lunch !== "gravel" && ( lunch === "burrito" || 

lunch === "tacos" ) ) {
  console.log( "Delicious." );
}

JAVASCRIPT FOR WEB DESIGNERS66



And, for good measure, let’s turn that into a function:

function mealChecker( lunch ) {
  if( lunch !== "gravel" && ( lunch === "burrito" ||  

  lunch === "tacos" ) ) {
    console.log( "Delicious." );
  }
}

mealChecker( "Tacos" );
undefined

Something has gone horribly wrong! We passed the function 
a string the way it might expect, but we made one little mistake: 
we capitalized the T. Since JavaScript is case-sensitive, Tacos 
isn’t equal to tacos—and our script was expecting the latter.

Now, we could make a rule for ourselves that this function 
should only ever receive an all-lowercase value, but that’s one 
more thing we have to document—or worse, “just keep in mind 
from now on.” A better approach would be to plan for both 
upper- and lowercase values by getting JavaScript to normalize 
things for us.

If you recall from the previous chapter, even though we 
don’t define them with methods or properties the way we might 
define an object from scratch, any string we define will come 
with a set of built-in properties: .length gives you the number 
of characters in the string, for example. Here, we’ll use one of 
the native methods for transforming a string to make sure we’re 
comparing apples to apples and tacos to tacos: .toLowerCase(). 
Just like the name implies, it returns the all-lowercase value of 
a string:

"THIS IS A STRING".toLowerCase();
this is a string

While it returns the lowercase value of a string, it’s important 
to keep in mind that this—and methods like it—don’t change a 

67Conditional Statements



string to lowercase. If we have a string stored in a variable and 
call .toLowerCase() on it, the variable remains unchanged.

var foo = "A String";
undefined

foo
"A String"

foo.toLowerCase();
"a string"

foo
"A String"

That means there are a couple of ways to handle the compari-
sons in our function. The first way is to call .toLowerCase() on 
every instance of the lunch variable throughout the function:

function mealChecker( lunch ) {
  if( lunch.toLowerCase() !== "gravel" && (  

  lunch.toLowerCase() === "burrito" ||  
  lunch.toLowerCase() === "tacos" ) ) {

    console.log( "Delicious." );
  }
}

mealChecker( "Tacos" );
Delicious.

That does work, but it isn’t very DRY code. I think we can do 
better. Instead, we’ll only use .toLowerCase() once—at the top 
of our function, before we do any string comparison—and use 
it to change the value of the lunch variable to the lowercased 
version of itself that .toLowerCase() returns.

JAVASCRIPT FOR WEB DESIGNERS68



function mealChecker( lunch ) {
  lunch = lunch.toLowerCase();
  if( lunch !== "gravel" && ( lunch === "burrito" ||  

  lunch === "tacos" ) ) {
    console.log( "Delicious." );
  }
}
mealChecker( "TACOS" );
Delicious.

We don’t need var when we assign a value to lunch, since 
using lunch as an argument means we’ve already defined it as 
a variable local to the function.

switch
A switch statement works a lot like that unwieldy series of 
else if statements we tried out, but performs the same sort 
of comparisons in a more compact, sensible way. The syntax is 
a little different from the if syntaxes we’re used to, however:

var theNumber = 5
switch( theNumber ) {
  case 1:
    console.log( "This is the number one." );
    break;
  case 2:
    console.log( "This is the number two." );
    break;
  case 3:
  case 4:
    console.log( "This is either three or four." );
    break;
  case 5:
    console.log( "This is the number five." );
}

69Conditional Statements



There’s a lot going on in there, so let’s go through this one 
line by line. Before we do, remember that JavaScript doesn’t 
care what we use for whitespace—all that indentation is some-
thing we’re doing for the sake of readability, but it isn’t required.

The first line is old hat by this point: we’re defining a vari-
able with the identifier theNumber and giving it a value of the 
number data type 5—and since we’re just tinkering, we won’t 
worry about how theNumber isn’t a very descriptive identifier, 
accurate though it may be.

The second line looks a little bit like the if statements we 
now know and hopefully love: the keyword switch followed 
by a set of parentheses and a pair of curly braces. switch 
differs from if in that we’re not performing a comparison 
between the parentheses, though—instead, we’re just passing 
along the information we want to compare, the same way 
we were passing a string to our function a few minutes ago.  
switch( theNumber ) {} only says that the variable theNumber 
is the value we want to compare within the switch statement—
and that’ll make sense in just a moment.

The third line—case 1:—is where we perform the actual 
comparison. The case keyword is followed by a value that 
gets compared to the value we passed along in the parentheses 
after the switch keyword, followed by a colon. So, the line  
case 1: is really saying, “If theNumber is equal to the number 
one, do the following.” All the comparisons in a switch are 
strict—case "1": wouldn’t match, since "1" would be a string 
type, not a number type.

switch( "1" ) {
  case 1:
    console.log( "This is the number one." );
    break;
  case "1":
    console.log( "This is the string '1'" ); 

} 
This is the string '1'

JAVASCRIPT FOR WEB DESIGNERS70



The break statement then says, “We’ve found our match, so 
stop comparing.” It isn’t always the case that you’d want to stop 
the comparison right away; if you skip ahead a few lines, you’ll 
see that we’re checking against case 3 and case 4, and if either 
of those comparisons match, we’re going on to console.log 
that the value is either three or four, then breaking after that. 
The reason this works is that a matching case inside switch, 
strictly speaking, tells JavaScript, “Run every line of code that 
follows the matching case until you hit a break keyword (or the 
end of the switch’s curly braces).”

To illustrate that behavior, let’s say we wanted to put together 
a function—for whatever reason—that accepts the current 
numeric day of the week (1–7), and spits out the names of all 
the days we’ve seen so far this week.

function daysPassedThisWeek( numericDay ) {
  console.log( "The following days have already  

  happened this week:" );
  switch( numericDay ) {
    case 7:
      console.log( "Saturday" );
    case 6:
      console.log( "Friday" );
    case 5:
      console.log( "Thursday" );
    case 4:
      console.log( "Wednesday" );
    case 3:
      console.log( "Tuesday" );
    case 2:
      console.log( "Monday" );
    case 1:
      console.log( "Sunday" );
      break;
    default:
      console.log( "Wait, that isn’t a numbered day  

      of the week." );
  }
}

71Conditional Statements



daysPassedThisWeek( 3 ); /* Today is the third day 
of the week. */

The following days have already happened this week:
Tuesday
Monday
Sunday

Not the most useful function around, but you get the 
idea: when case 3: matches, all the console.log statements 
between there and the next break statement are executed, and 
we get a list of days.

You’ll also notice something new in this switch statement: 
a default keyword.

The default keyword is the else of a switch, if that phrase 
could possibly make sense: in the event that none of the case 
values above it return true, the code that follows default will 
be executed.

daysPassedThisWeek( 75 );
The following days have already happened this week:
Wait, that isn’t a numbered day of the week.

Since we’re putting the default code last, we don’t need a 
break afterwards—but we do need one before the default, or 
else that error will appear with the rest of our list. Though, 
if you’d prefer, the function above could be written with the 
default case coming first, followed by a break.

function daysPassedThisWeek( numericDay ) {
  console.log( "The following days have already  

  happened this week:" );
  switch( numericDay ) {
    default: 
      console.log( "Wait, that isn’t a numbered day  

      of the week." );
      break;
    case 7:
      console.log( "Saturday" );

JAVASCRIPT FOR WEB DESIGNERS72



    case 6:
      console.log( "Friday" );
    case 5:
      console.log( "Thursday" );
    case 4:
      console.log( "Wednesday" );
    case 3:
      console.log( "Tuesday" );
    case 2:
      console.log( "Monday" );
    case 1:
      console.log( "Sunday" );
  }
}
daysPassedThisWeek( 5 ); /* Today is the fifth day 

of the week. */
The following days have already happened this week:
Thursday
Wednesday
Tuesday
Monday
Sunday

switch is a weird one, for sure, but there are a few situations 
where performing a series of comparisons against a single 
object will make a lot of sense. For instance, imagine a script 
that accepts keyboard input and uses it to move a sprite—many 
games ask you to use either the arrow keys or the A and D keys 
to move left and right. In JavaScript, key presses are represented 
by an event object—which we’ll discuss a little later on—with 
a property containing a numeric value that corresponds to the 
key that was pressed.

function movePlayer( keyCode ) {
  switch( keyCode ) {
    case 65: // Keycode for the A key
    case 37: // Keycode for the left arrow
      moveLeft();
      break;

73Conditional Statements



    case 68: // Keycode for the D key
    case 39: // Keycode for the right arrow
      moveRight();
  }
}

You could write this as a series of if statements as well, but 
adding new controls over time would mean chaining one if 
after another, all performing comparisons against the same  
keyCode object. switch ends up being a much more flexible—
and DRY—way to go about it.

THAT ESCALATED QUICKLY
From “if this, do that” to methods of expressing incredibly 
complex logic, all wrapped up in the humble if and switch 
keywords. It’s a lot to keep in your head, but again: we don’t 
have to. Instead, we can walk away from this chapter knowing 
that there’s some way to express whatever conditional logic we 
might need—and if you can’t remember the exact syntax off 
the top of your head, well, this chapter isn’t going anywhere.

Conditional statements allow us to selectively execute code, 
but there’s more to control flow than that. Programming fre-
quently involves performing a set of tasks over and over again—
for example, iterating over all elements of a certain type within 
a page and checking a common attribute against an expected 
value, or iterating over all the items in an array and checking 
their values against a conditional statement. In order to do those 
kinds of things, we’ll need to learn about loops.

JAVASCRIPT FOR WEB DESIGNERS74



LOOPS ALLOW US to repeat lines of code until a certain set of 
conditions are met. It’s another simple concept on the surface, 
but one that allows us to do a surprising amount of work. 

for
You’ll use for loops in situations where you’ll be running a loop 
for a known number of times, or iterations. (By “known,” I don’t 
mean that we, the brains between the keyboards and chairs, 
necessarily know how many times we’ll need to go through 
a loop in advance; I just mean that we’ll be looping through a 
known quantity.)

The syntax for a loop is a little tricky, since we’re packing 
a lot of information into just a few characters. The basics are 
almost expected by this point: a for keyword, followed by a set 
of parentheses, followed by a pair of curly braces that we want 
our loop to execute however many times. 

But it’s the syntax between the parentheses that’s unlike 
anything we’ve encountered so far. A for loop accepts three 

LOOPS4
75Loops



expressions: the initialization, the condition, and the somewhat 
redundantly named final expression, all separated by semicolons.

for( var i = 0; i < 3; i++ ) {
  console.log( "This loop will run three times.")
}
(3) This loop will run three times.

The initialization is almost always used for one thing: to ini-
tialize a variable that will act as a counter. It gets initialized the 
same as any other variable, with a var keyword, an identifier, 
and an assignment. You’ll see a lot of these counter variables 
with the identifier i, which stands for “iteration.” It does break 
the rule against giving identifiers single-character names, but it’s 
a well-established convention. Since JavaScript starts indexing 
things at zero, it’s a good idea for us to always start from zero 
as well—that way we don’t get into the habit of counting up 
from one or run into any mismatched counters in our scripts.

The condition is how we define the point at which the loop 
stops. So, we’re defining i as starting at zero, and we want the 
loop to run for as long as i is less than three.

The final expression is the statement we want executed at 
the end of every iteration through the loop—so, this is where 
we tick the i variable’s value up by one. If you think all the way 
back to the mathematical operators we learned about earlier, 
you’ll recall that the ++ syntax increments a value by one: i++ 
as the final expression says to increase i by one every time the 
loop finishes.

So, in plain English, the for syntax above says this: “Start i 
at zero. Only run the following code if i is smaller than three, 
and add one to i after every loop.”

One of the most common uses for a for loop is iterating 
over each item in an array. As we learned in the last chapter, 
arrays come with a property for determining how many items 
it contains—the .length property—so we’ll always be dealing 
with a known quantity. If we use the array’s length in the con-
dition, we get a loop that iterates as many times as there are 
items in our array:

JAVASCRIPT FOR WEB DESIGNERS76



var loopArray = ["first", "second", "third"];
for( var i = 0; i < loopArray.length; i++ ) {
  console.log( "Loop." );
}
(3) Loop.

And if we add an item to our test array, the number of iter-
ations changes to match:

var loopArray = ["first", "second", "third", 4];

for( var i = 0; i < loopArray.length; i++ ) {
  console.log( "Loop." );
}
(4) Loop.

Cool—we can make a thing that runs arbitrary code as many 
times as we have items in an array. I know that isn’t particularly 
useful or exciting on the surface, but what’s very exciting (I don’t 
get out much) is that i is a plain ol’ number type variable that’s 
available to us on every iteration of the loop, and since we’re 
counting from zero, it contains a value that corresponds to the 
index of each item in our array. A for loop gives us a method 
of iterating over the data in an array all at once:

var names = [ "Ed", "Al" ];

for( var i = 0; i < names.length; i++ ) {
  var name = names[ i ];
  console.log( "Hello, " + name + "!" );
}
Hello, Ed!
Hello, Al!

Now we can reach back into the names variable that we’re 
iterating over, and using i as the index, we can tap into each 
item inside the array.

77Loops



We didn’t have to initialize a new name variable here, of 
course—we could have used names[ i ] inside our console.
log and had everything work the same way. Storing the array’s 
data in a variable on each iteration is a good idea if you’re likely 
to access that data multiple times during your loop, just for the 
sake of convenience.

for/in

for/in loops start out the same way as the for loops above, 
using a for keyword, a set of parentheses, and a pair of curly 
braces containing whatever code we want to iterate over. 
Likewise, you’ll use the for/in syntax to iterate over multiple 
items—but not necessarily the way we would want to with an 
array. for/in is used to iterate over the properties of an object—
but in an arbitrary order, not a sequential one.

Instead of an initialization, condition, and final expression, a 
for/in loop starts with us initializing a variable that will corre-
spond with the keys in our object, followed by the in keyword, 
and the object we want to iterate over:

var nameObject = {
  "first": "Mat",
  "last": "Marquis" 
};

for( var name in nameObject ) {
  console.log( "Loop." );
}
(2) Loop.

Unlike iterating over an array using for—where we have 
a handy i variable at our disposal—we now have to do a little 
more work to figure out what strings are used as keys in our 
object. Those keys get assigned to the name variable we initial-
ized in the parentheses.

JAVASCRIPT FOR WEB DESIGNERS78



var nameObject = {
  "first": "Mat",
  "last": "Marquis" 
};

for( var name in nameObject ) {
  console.log( name );
}
first
last

Not too useful on the surface, but just like a regular for loop 
gave us a number data type we could use to access our data on 
each iteration, for/in gives us the string we need to access the 
data in an object:

var fullName = {
  "first": "Mat",
  "last": "Marquis" 
};

for( var name in fullName ) {
  console.log( name + ": " + fullName[ name ] );
}
first: Mat
last: Marquis

You’ll notice we’re using bracket notation instead of dot 
notation here—that’s because we have to. If we were to try 
to access fullName.name, we’d be trying to access exactly 
that: fullName.name—a property with the key name inside  
fullName—instead of a property with a key that matches the 
string that name contains.

Now, you might be thinking, “But if pretty much everything 
is an object—sort of—does that mean we can use for/in to 
iterate over an array?” You can, in fact. Arrays behave just like 
any other objects using for/in, but for/in isn’t quite as array-
friendly as a regular for loop. For one thing, we can’t guarantee 

79Loops



that for/in will iterate over an array in sequential order—and 
that might be okay, depending on what you’re doing.

The bigger problem is that for/in has a catch that a regular 
for loop doesn’t: since pretty much everything is an object—
and you can add properties to any object—that means for/in 
can end up iterating over properties we never meant for it to 
know about.

I’ve previously mentioned that everything in JavaScript has 
“built-in” methods and properties—how a string, even though 
we only define it as a handful of characters, will come with 
properties like .length and methods like .toLowerCase().

These methods and properties aren’t completely buried in 
the dark recesses of JavaScript. We can see—and even change—
the methods and properties that come attached to data types, 
arrays, objects, and so on.

Prototypal inheritance

Most objects have an internal property named prototype that 
contains those built-in properties, but accessing it for ourselves 
is a little strange. When we access a property on an object—
even one we’ve created ourselves—the JavaScript runtime first 
checks to see if that property is something we defined. If not, 
it looks for that key as a prototype property for that object’s 
constructor—a sort of overarching template that JavaScript fol-
lows whenever dealing with a certain type of object. All strings, 
for example, inherit all the prototype properties and methods 
from the String constructor. With most browser tools, typing 
String.prototype into your console will show you all of those 
built-in properties.

If your first instinct is that JavaScript allowing us to override 
built-in methods is a little scary, you’re absolutely right. The 
toString method, for example, is a pretty cut-and-dry way of 
converting any object to a string, but with a few lines of code we 
can overwrite it, and make that method do whatever we want.

var myObject = {};
var otherObject = {};

JAVASCRIPT FOR WEB DESIGNERS80



myObject.toString();
"[object Object]"

myObject.toString = function() {
  console.log( "I just broke JavaScript a little." );
};

myObject.toString();
I just broke JavaScript a little.

otherObject.toString();
"[object Object]"

That’s kind of a scary amount of power, but it gets scarier.
We can access a constructor’s prototype from any object of 

that type by using the __proto__ property—a reference to the 
prototype for all objects of that same type. It isn’t available in 
all browsers just yet, but that’s okay—we probably shouldn’t be 
messing with it anyway. __proto__ allows us to add, remove, 
and completely change how JavaScript’s built-in properties 
work on any one object—and in doing so, change the set of 
properties and methods that are built into all related objects.

var myObject = {};
var unrelatedObject = {};

myObject.toString();
"[object Object]"

myObject.__proto__.toString = function() {
  console.log( "I just broke JavaScript a LOT." );
};

myObject.toString();
I just broke JavaScript a LOT.

unrelatedObject.toString(); // Uh oh.
I just broke JavaScript a LOT.

81Loops



Here, we managed to change the toString method not just 
on myObject, but on all objects, by changing it at the prototype 
level. In a vacuum like this, where we can see all our code at a 
glance, it may not seem like an especially terrifying prospect—
but by tampering with the way JavaScript does things, we run 
a huge risk of breaking things on a real site.

Luckily, you won’t see this much. By the time anyone has 
advanced enough in their script-writing to think they have a 
need to mess with prototype, they’ve learned not to. What you 
will see on occasion are additions to prototype—methods and 
functions added to prototype so they’re available to all objects 
of the same type.

We can add methods and properties to all objects of a certain 
type by making changes to the prototype property of a con-
structor directly—we just can’t change the properties that have 
already been defined. This works the way you might expect: 
making additions to String.prototype works the way you’d 
add properties on an object you created yourself.

Now, adding methods to prototype isn’t a great idea either—
especially when it comes to for/in loops. But for the sake of 
argument, let’s say you’ll frequently need to check objects 
for the presence of a key with the identifier name. In theory, 
we could just add a method to all objects by adding a new 
method to the Object constructor’s prototype property. We 
won’t need to use __proto__ here, since we’re not looking to 
change Object.prototype by way of an object data type itself: 

var firstObject = {
  "foo" : false
};
undefined

var secondObject = { 
  "name" : "Hawkeye",
  "location" : "Maine"
};
undefined

JAVASCRIPT FOR WEB DESIGNERS82



Object.prototype.containsAName = function() {
  var result = false;
  for( var key in this ) {
    if( key === "name" ) {
      result = true;
    }
  }
  return result;
}
function Object.containsAName()

firstObject.containsAName();
false

secondObject.containsAName();
true

Once you’ve added something to an object’s prototype, that 
property or method will be available to all instances of that 
data type.

Now, don’t commit that code to memory—it's an incredibly 
convoluted way to see whether an object contains the key name. 
It works well enough, but in addition to being a strange way to 
handle a simple task, it comes with an unintended side-effect: 
an object’s built-in properties aren’t enumerable, meaning that 
they don’t show up when we loop through an object’s proper-
ties using for/in. When we add new properties to prototype, 
however, they are enumerable:

Object.prototype.containsAName = function() {
  var result = false;
  for( var key in this ) {
    if( key === "name" ) {
      result = true;
    }
  }
  return result;
}
function Object.containsAName()

83Loops



var newObject = { "name": "BJ" };
for( var key in newObject ) {
  console.log( key );
}
name
containsAName

Now every time we run a for/in loop, our containsAName 
method is going to show up—certainly not ideal, and probably 
reason enough to leave prototype alone. Whenever we tinker 
with prototype, we’re making global changes to JavaScript’s 
internals—adding a method or property means for/in loops 
throughout all the scripts on our page could end up behav-
ing unexpectedly.

That means we have to look at the issue from the other 
side—what happens to our for/in loops when someone else 
starts tinkering with prototype? A page can contain scripts 
written by multiple developers, third-party scripts from exter-
nal sources, and so on—we can’t be certain that our for/in 
loops won’t be affected by unexpected enumerable properties.

hasOwnProperty

The reason for this treacherous journey through prototype was 
two-fold: first, to teach you a little bit about prototype, since 
we were in the neighborhood and all. Second, to introduce you 
to the hasOwnProperty method, which we can use to safeguard 
our for/in loops against unexpected enumerable properties 
on prototype:

Object.prototype.containsAName = function() {
  var result = false;
  for( var key in this ) {
    if( key === "name" ) {
      result = true;
    }
  }
  return result;
}

JAVASCRIPT FOR WEB DESIGNERS84



function Object.containsAName()

var mysteryObject = {
  "name" : "Frank"
}

mysteryObject.hasOwnProperty( "name" );
true

mysteryObject.hasOwnProperty( "containsAName" );
false

It just so happens that we can use hasOwnProperty to 
do what we were trying to do when we were messing with  
prototype: determine whether an object we created contains a 
certain property. But even more importantly—at least, for the 
sake of our loops—hasOwnProperty doesn’t apply to properties 
inherited from prototype. We can use it to safeguard our for/
in loops against misguided prototype shenanigans.

Object.prototype.customPrototypeMethod = function() {
  console.log( "Hello again." ); 
};
function Object.customPrototypeMethod()

var swamp = {
  "bunk1" : "Hawkeye",
  "bunk2" : "BJ",
  "bunk3" : "Frank"
};
undefined

for( var bunk in swamp ) {
  console.log( swamp[ bunk ] );
}
Hawkeye
BJ
Frank
function Object.containsAName()

85Loops



for( var bunk in swamp ) {
  if( swamp.hasOwnProperty( bunk ) ) {
    console.log( swamp[ bunk ] );
  }
}
Hawkeye
BJ
Frank 

With hasOwnProperty in place, no additions to prototype 
can change the results we expect from our for/in loops. After 
all, we won’t always be able to guarantee that we control every 
line of code that makes it into our websites, or know for certain 
whether another developer decided to tinker with a construc-
tor’s prototype.

while
After that brief excursion into prototype, the syntax for while 
loops is going to be a refreshing change of pace. Like all the 
others, it starts with a keyword—while—followed by a set of 
parentheses and a set of curly braces. The only thing we’ll put 
between the parentheses of a while loop is a condition—and just 
like the keyword implies, the loop will continue to execute for 
as long as that condition evaluates to true.

var i = 0;
while( i < 3 ) {
  console.log( "Loop." );
  i++;
}
(3) Loop

The code above is really just another way of writing our first 
for loop. Instead of putting the initialization, condition, and 
final expression between the parentheses, we’re creating the 
counter variable before the loop and incrementing the counter 
inside the loop.

JAVASCRIPT FOR WEB DESIGNERS86



This isn’t a common case for while, however—we could 
write this much more concisely using for, after all. We’ll use 
while when we don’t have any way of measuring the number 
of iterations necessary, and instead want to continue to run 
the loop until a certain condition is met. For example, the 
following snippet of code will continually generate a number 
between zero and nine, only stopping when that random num-
ber equals three:

var random = Math.floor( Math.random() * 10 );

while( random !== 3 ){
  console.log( "Nope, not " + random );
  var random = Math.floor( Math.random() * 10 );
}
console.log( "Got it!" );
Nope, not 5
Nope, not 9
Nope, not 2
Got it!

If we run this code again, that while loop could run any 
number of times before continuing on to the console.log that 
follows it—or random could contain a 3 right off the bat, and 
the loop will never run at all.

do/while

do/while loops serve largely the same purpose as while loops: 
to iterate over a loop until a given condition evaluates to true, 
as many times as is needed. The syntax is a little different—in 
fact, compared to the conditional logic you’ve seen so far, do/
while loops look a little backwards. We start with a do keyword, 
immediately followed by a set of curly braces—no parentheses, 
no conditions—containing the code we want to iterate over. 
After the curly braces, we use the while keyword and parenthe-
ses containing the condition; as long as that condition evaluates 
to true, the loop will keep on running.

87Loops



var i = 0;

do {
  console.log( "Loop." );
  i++;
} while (i < 3);
(3) Loop.

There’s really only one difference between a do/while and 
a plain ol’ while loop: the contents of a while loop may never 
run at all—as in our random number example above—but the 
code in a do/while loop will always execute at least once.

Instead of evaluating the condition then deciding whether 
or not to run the code, the way all the other loops work, do/
while will execute the code, then stop the loop after the condi-
tion is found. If we were to write our random-number guessing 
game above using do/while, the code will run even once the 
condition is met:

do {
  var random = Math.floor( Math.random() * 10 );
  console.log( "Is it... " + random + "?" );
} while( random !== 3 );
console.log( "Got it!" );
Is it... 7?
Is it... 9?
Is it... 6?
Is it… 3?
Got it!

Now we don’t have to generate a random number before the 
loop and regenerate it on each iteration: since the code inside 
the do curly braces will always be executed before the condition 
is evaluated, we can generate the random number for the first 
time and regenerate it on each subsequent iteration on that one 
line. We then log each “guess” to our console—and since the 

JAVASCRIPT FOR WEB DESIGNERS88



code executes before the condition is checked, that will include 
the matching number. Now that the condition matches, the 
loop stops, and we move on.

continue AND break
All of the loop syntaxes handle both iteration and termination—
they all accept some form of condition for stopping the loop. If 
we need more finely grained control, we can do a little steering 
within our loops using the continue and break keywords.

To play with these keywords a little, let’s start with a for 
loop that counts from zero to four:

for( var i = 0; i < 5; i++ ) {
  console.log( i );
}
0
1
2
3
4

continue allows us to skip ahead to the next iteration of a 
loop without executing any of the code inside the loop that 
follows the continue statement.

for( var i = 0; i < 5; i++ ) {
  if( i === 2 ) {
    continue;
  }
  console.log( i );
}
0
1
3
4

89Loops



This loop skips the third console.log by using continue 
when i is equal to two—which skips the third iteration, 
remember, since we start counting at zero. We never see a 2 
in our console.

break—a deeply satisfying keyword to type after a few hours 
of programming, in my experience—not only stops the current 
iteration of a loop, but stops the loop completely:

for( var i = 0; i < 5; i++ ) {
  if( i === 2 ) {
    break;
  }
  console.log( i );
}
0
1

Upon encountering a break, JavaScript reacts the same way 
it does when it reaches a loop’s built-in condition for termina-
tion: it stops iterating over the loop completely. As a matter of 
fact, we don’t need to build in that condition at all—we can write 
a loop that iterates forever by default, and control its behavior 
using break.

var concatString = "a";
while( true ) {
  concatString = concatString + "a";

  if( concatString.length === 5 ) {
    break;
  }
  console.log( concatString );
}
aa
aaa
aaaa

JAVASCRIPT FOR WEB DESIGNERS90



true can’t possibly stop evaluating to true, so using it as a 
while condition means the loop has to run forever—unless we 
use break to stop it, once our string reaches five characters long.

INFINITE LOOPS
We’re standing on the precipice of a very touchy subject for 
developers of any language. What happens if we pass while the 
keyword true as a condition, or write a for loop that counts 
upwards from zero, but only stops iterating if i is equal to -1? 
We’ve just created an infinite loop, and here be dragons.

Upon encountering an infinite loop, some modern brows-
ers eventually offer you the option of aborting the script—but 
only newer browsers, and not always. More often than not, an 
infinite loop means a browser crash.

It happens to the best of us, and there’s no serious harm done 
(as long as the offending code didn’t make it out to a production 
website). Close and reopen your browser and you’ll be back to 
business as usual—just be sure to fix the infinite loop before 
you attempt to run your script again.

PUTTING IT ALL TOGETHER
We’ve covered a lot of ground so far. Now that we have a sense 
of how JavaScript handles data, logic, and loops, we can start 
putting it all together into something more useful than a couple 
of lines in our developer consoles. It’s time to write a script in 
the context it was meant to occupy: a real web page.

91Loops



BEFORE WE CAN DO ANYTHING with a page, we have to first 
revisit something we touched on near the start: the Document 
Object Model. There are two purposes to the DOM: providing 
JavaScript with a map of all the elements on our page, and pro-
viding us with a set of methods for accessing those elements, 
their attributes, and their contents.

The “object” part of Document Object Model should make 
a lot more sense now than it did the first time the DOM came 
up, though: the DOM is a representation of a web page in the 
form of an object, made up of properties that represent each of 
the document’s child elements and subproperties representing 
each of those elements’ child elements, and so on. It’s objects 
all the way down.

window: THE GLOBAL CONTEXT
Everything we do with JavaScript falls within the scope of 
a single object: window. The window object represents, pre-
dictably enough, the entire browser window. It contains the 

DOM SCRIPTING5
JAVASCRIPT FOR WEB DESIGNERS92



entire DOM, as well as—and this is the tricky part—the whole 
of JavaScript.

When we first talked about variable scope, we touched on 
the concept of there being “global” and “local” scopes, meaning 
that a variable could be made available either to every part of 
our scripts or to their enclosing function alone.

The window object is that global scope. All of the functions 
and methods built into JavaScript are built off of the window 
object. We don’t have to reference window constantly, of course, 
or you would’ve seen a lot of it before now—since window is 
the global scope, JavaScript checks window for any variables 
we haven’t defined ourselves. In fact, the console object that 
you’ve hopefully come to know and love is a method of the 
window object:

window.console.log
function log() { [native code] }

It’s hard to visualize globally vs. locally scoped variables 
before knowing about window, but much easier after: when 
we introduce a variable to the global scope, we’re making it a 
property of window—and since we don’t explicitly have to ref-
erence window whenever we’re accessing one of its properties 
or methods, we can call that variable anywhere in our scripts 
by just using its identifier. When we access an identifier, what 
we’re really doing is this:

function ourFunction() {
  var localVar = "I’m local.";
  globalVar = "I’m global.";

  return "I’m global too!";
};
undefined

window.ourFunction();
I’m global too!

93DOM Scripting



window.localVar;
undefined

window.globalVar;
I’m global.

The DOM’s entire representation of the page is a prop-
erty of window: specifically, window.document. Just entering  
window.document in your developer console will return all of 
the markup on the current page in one enormous string, which 
isn’t particularly useful—but everything on the page can be 
accessed as subproperties of window.document the exact same 
way. Remember that we don’t need to specify window in order 
to access its document property—window is the only game in 
town, after all.

document.head
<head>...</head>

document.body
<body>...</body>

Those two properties are themselves objects that contain 
properties that are objects, and so on down the chain. (“Every-
thing is an object, kinda.”)

USING THE DOM
The objects in window.document make up JavaScript’s map 
of the document, but it isn’t terribly useful for us—at least, 
not when we’re trying to access DOM nodes the way we’d 
access any other object. Winding our way through the  
document object manually would be a huge headache for us, 
and that means our scripts would completely fall apart as soon 
as any markup changed.

But window.document isn't just a representation of the page; 
it also provides us with a smarter API for accessing that infor-
mation. For instance, if we want to find every p element on a 

JAVASCRIPT FOR WEB DESIGNERS94



page, we don’t have to write out a string of property keys—we 
use a helper method built into document that gathers them all 
into an array-like list for us. Open up any site you want—so 
long as it likely has a paragraph element or two in it—and try 
this out in your console:

document.getElementsByTagName( "p" );
[<p>...</p>, <p>...</p>, <p>...</p>, <p>...</p>]

Since we’re dealing with such familiar data types, we already 
have some idea how to work with them:

var paragraphs = document.getElementsByTagName( "p" );
undefined

paragraphs.length
4

paragraphs[ 0 ];
<p>...</p>

But DOM methods don’t give us arrays, strictly speaking. 
Methods like getElementsByTagName return “node lists,” which 
behave a lot like arrays. Each item in a nodeList refers to an 
individual node in the DOM—like a p or a div—and will come 
with a number of DOM-specific methods built in. For example, 
the innerHTML method will return any markup a node con-
tains—elements, text, and so on—as a string:

var paragraphs = document.getElementsByTagName( "p" ), 
lastIndex = paragraphs.length - 1, /* Use the length 
of the `paragraphs` node list minus 1 (because of 
zero-indexing) to get the last paragraph on the page 
*/

  lastParagraph = paragraphs[ lastIndex ]; 

lastParagraph.innerHTML;
And that’s how I spent my summer vacation.

95DOM Scripting



The same way these methods give us access to information 
on the rendered page, they allow us to alter that information, 
as well. For example, the innerHTML method does this the same 
way we’d change the value of any other object: a single equals 
sign, followed by the new value.

var paragraphs = document.getElementsByTagName( "p" ),
  firstParagraph = paragraphs[ 0 ];
firstParagraph.innerHTML = "Listen up, chumps:";
"Listen up, chumps:"

JavaScript’s map of the DOM works both ways: document 
is updated whenever any markup changes, and our markup is 
updated whenever anything within document changes (FIG 5.1).

Likewise, the DOM API gives us a number of methods for 
creating, adding, and removing elements. They’re all more or 
less spelled out in plain English, so even though things can seem 
a little verbose, it isn’t too hard to break down.

FIG 5.1: First drafts are always tough. 

JAVASCRIPT FOR WEB DESIGNERS96



DOM SCRIPTING
Before we get started, let’s abandon our developer console for a 
bit. Ages ago now, we walked through setting up a bare-bones 
HTML template that pulls in a remote script, and we’re going to 
revisit that setup now. Between the knowledge you’ve gained 
about JavaScript so far and an introduction to the DOM, we’re 
done with just telling our console to parrot things back to us—
it’s time to build something.

We’re going to add a “cut” to an index page full of text—a 
teaser paragraph followed by a link to reveal the full text. 
We’re not going to make the user navigate to another page, 
though. Instead, we’ll use JavaScript to show the full text on 
the same page.

Let’s start by setting up an HTML document that links out to 
an external stylesheet and external script file—nothing fancy. 
Both our stylesheet and script files are empty with .css and .js 
extensions, for now—I like to keep my CSS in a /css subdirec-
tory and my JavaScript in a /js subdirectory, but do whatever 
makes you most comfortable.

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <link rel="stylesheet" type="text/css"  

    href="css/style.css">
  </head>
  <body>

    <script src="js/script.js"></script>
  </body>
</html>

We’re going to populate that page with several paragraphs 
of text. Any ol’ text you can find laying around will do, includ-
ing—with apologies to the content strategists in the audience—a 
little old-fashioned lorem ipsum. We’re just mocking up a quick 
article page, like a blog post.

97DOM Scripting



<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8">
    <link rel="stylesheet" type="text/css"  

    href="css/style.css">
  </head>
  <body>
    <h1>JavaScript for Web Designers</h1>

    <p>In all fairness, I should start this book  
    with an apology—not to you, reader, though I  
    don’t doubt that I’ll owe you at least one by  
    the time we get to the end. I owe JavaScript a  
    number of apologies for the things I’ve said  
    to it during the early years of my career,  
    some of which were strong enough to etch  
    glass.</p>

    <p>This is my not-so-subtle way of saying that  
    JavaScript can be a tricky thing to learn.</p>

    [ … ]

    <script src="js/script.js"></script>
  </body>
</html>

Feel free to open up the stylesheet and play with the typog-
raphy, but don’t get too distracted. We’ll need to write a little 
CSS later, but for now: we’ve got scripting to do.

We can break this script down into a few discrete tasks: we 
need to add a Read More link to the first paragraph, we need 
to hide all the p elements apart from the first one, and we need 
to reveal those hidden elements when the user interacts with 
the Read More link.

We’ll start by adding that Read More link to the end of the 
first paragraph. Open up your still-empty script.js file and enter 
the following:

JAVASCRIPT FOR WEB DESIGNERS98



var newLink = document.createElement( "a" );

First, we’re intializing the variable newLink, which uses 
document.createElement( "a" ) to—just like it says on the 
tin—create a new a element. This element doesn’t really exist 
anywhere yet—to get it to appear on the page we’ll need to 
add it manually. First, though, <a></a> without any attributes 
or contents isn’t very useful. Before adding it to the page, let’s 
populate it with whatever information it needs.

We could do this after adding the link to the DOM, of course, 
but there’s no sense in making multiple updates to the element 
on the page instead of one update that adds the final result—
doing all the work on that element before dropping it into the 
page helps keep our code predictable.

Making a single trip to the DOM whenever possible is also 
better for performance—but performance micro-optimization 
is easy to obsess over. As you’ve seen, JavaScript frequently 
offers us multiple ways to do the same thing, and one of those 
methods may technically outperform the other. This invari-
ably leads to “excessively clever” code—convoluted loops that 
require in-person explanations to make any sense at all, just 
for the sake of shaving off precious picoseconds of load time. 
I’ve done it; I still catch myself doing it; but you should try not 
to. So while making as few round-trips to the DOM as possible 
is a good habit to be in for the sake of performance, the main 
reason is that it keeps our code readable and predictable. By 
only making trips to the DOM when we really need to, we avoid 
repeating ourselves and we make our interaction points with 
the DOM more obvious for future maintainers of our scripts.

So. Back to our empty, attribute-less <a></a> floating in the 
JavaScript ether, totally independent of our document.

Now we can use two other DOM interfaces to make that link 
more useful: setAttribute to give it attributes, and innerHTML 
to populate it with text. These have a slightly different syntax. 
We can just assign a string using innerHTML, the way we’d assign 
a value to any other object. setAttribute, on the other hand, 
expects two arguments: the attribute and the value we want for 
that attribute, in that order. Since we don’t actually plan to have 

99DOM Scripting



this link go anywhere, we’ll just set a hash as the href—a link 
to the page you’re already on.

var newLink = document.createElement( "a" );

newLink.setAttribute( "href", "#" );
newLink.innerHTML = "Read more";

You’ll notice we’re using these interfaces on our stored ref-
erence to the element instead of on document itself. All the 
DOM’s nodes have access to methods like the ones we’re 
using here—we only use document.getElementsByTagName( 
"p" ) because we want to get all the paragraph elements  
in the document. If we only wanted to get all the para-
graph elements inside a certain div , we could do the 
same thing with a reference to that div—something like  
ourSpecificDiv.getElementsByTagName( "p" );. And since 
we’ll want to set the href attribute and the inner HTML of 
the link we’ve created, we reference these properties using 
newLink.setAttribute and newLink.innerHTML.

Next: we want this link to come at the end of our first para-
graph, so our script will need a way to reference that first para-
graph. We already know that document.getElementsByTagName(  
"p" ) gives us a node list of all the paragraphs in the page. Since 
node lists behave like arrays, we can reference the first item in 
the node list one by using the index 0.

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.innerHTML = "Read more";

For the sake of keeping our code readable, it’s a good idea 
to initialize our variables up at the top of a script—even if only 
by initializing them as undefined (by giving them an identifier 

JAVASCRIPT FOR WEB DESIGNERS100



but no value)—if we plan to assign them a value later on. This 
way we know all the identifiers in play.

So now we have everything we need in order to append a 
link to the end of the first paragraph: the element that we want 
to append (newLink) and the element we want to append it to 
(firstParagraph). 

One of the built-in methods on all DOM nodes is  
appendChild, which—as the name implies—allows us to 
append a child element to that DOM node. We’ll call that 
appendChild method on our saved reference to the first para-
graph in the document, passing it newLink as an argument. 

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.innerHTML = "Read more";

firstParagraph.appendChild( newLink );

Now—finally—we have something we can point at when we 
reload the page. If everything has gone according to plan, you’ll 
now have a Read More link at the end of the first paragraph on 
the page. If everything hasn’t gone according to plan—because 
of a misplaced semicolon or mismatched parentheses, for exam-
ple—your developer console will give you a heads-up that 
something has gone wrong, so be sure to keep it open.

Pretty close, but a little janky-looking—our link is crashing 
into the paragraph above it, since that link is display: inline 
by default (FIG 5.2).

We have a couple of options for dealing with this: I won’t 
get into all the various syntaxes here, but the DOM also gives 
us access to styling information about elements—though, in 
its most basic form, it will only allow us to read and change 
styling information associated with a style attribute. Just 
to get a feel for how that works, let’s change the link to  
display: inline-block and add a few pixels of margin to the 

101DOM Scripting



left side, so it isn’t colliding with our text. Just like setting attri-
butes, we’ll do this before we add the link to the page:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.innerHTML = "Read more";
newLink.style.display = "inline-block";
newLink.style.marginLeft = "10px";

firstParagraph.appendChild( newLink );

Well, adding those lines worked, but not without a couple of 
catches. First, let’s talk about that syntax (FIG 5.3).

Remember that identifiers can’t contain hyphens, and since 
everything is an object (sort of ), the DOM references styles in 

FIG 5.2: Well, it’s a start. FIG 5.3: Now we’re talking.

JAVASCRIPT FOR WEB DESIGNERS102



object format as well. Any CSS property that contains a hyphen 
instead gets camel-cased: margin-left becomes marginLeft, 
border-radius-top-left becomes borderRadiusTopLeft, and 
so on. Since the value we set for those properties is a string, 
however, hyphens are just fine. A little awkward and one more 
thing to remember, but this is manageable enough—certainly 
no reason to avoid styling in JavaScript, if the situation makes 
it absolutely necessary.

A better reason to avoid styling in JavaScript is to maintain 
a separation of behavior and presentation. JavaScript is our 
“behavioral” layer the way CSS is our “presentational” layer, 
and seldom the twain should meet. Changing styles on a page 
shouldn’t mean rooting through line after line of functions 
and variables, the same way we wouldn’t want to bury styles 
in our markup. The people who might end up maintaining the 
styles for the site may not be completely comfortable editing 
JavaScript—and since changing styles in JavaScript means we’re 
indirectly adding styles via style attributes, whatever we write 

left side, so it isn’t colliding with our text. Just like setting attri-
butes, we’ll do this before we add the link to the page:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.innerHTML = "Read more";
newLink.style.display = "inline-block";
newLink.style.marginLeft = "10px";

firstParagraph.appendChild( newLink );

Well, adding those lines worked, but not without a couple of 
catches. First, let’s talk about that syntax (FIG 5.3).

Remember that identifiers can’t contain hyphens, and since 
everything is an object (sort of ), the DOM references styles in 

FIG 5.2: Well, it’s a start. FIG 5.3: Now we’re talking.

103DOM Scripting



in a script is going to override the contents of a stylesheet 
by default.

We can maintain that separation of concerns by instead using 
setAttribute again to give our link a class. So, let’s scratch out 
those two styling lines and add one setting a class in their place.

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

firstParagraph.appendChild( newLink );

Now we can style .more-link in our stylesheets as usual:

.more-link {
  display: inline-block;
  margin-left: 10px;
}

Much better (FIG 5.4). It’s worth keeping in mind for the 
future that using setAttribute this way on a node in the DOM 
would mean overwriting any classes already on the element, 
but that’s not a concern where we’re putting this element 
together from scratch. 

Now we’re ready to move on to the second item on our to-do 
list: hiding all the other paragraphs.

Since we’ve made changes to code we know already worked, 
be sure to reload the page to make sure everything is still work-
ing as expected. We don’t want to introduce a bug here and 
continue on writing code, or we’ll eventually get stuck digging 
back through all the changes we made. If everything has gone 
according to plan, the page should look the same when we 
reload it now.

FIG 5.4: No visible changes, but this change keeps our styling decisions in our CSS and our 
behavioral decisions in JavaScript.

JAVASCRIPT FOR WEB DESIGNERS104



Now we have a list of all the paragraphs on the page, and we 
need to act on each of them. We need a loop—and since we’re 
iterating over an array-like node list, we need a for loop. Just to 
make sure we have our loop in order, we’ll log each paragraph 
to the console before we go any further:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

for( var i = 0; i < allParagraphs.length; i++ ) {
  console.log( allParagraphs[ i ] );
}

in a script is going to override the contents of a stylesheet 
by default.

We can maintain that separation of concerns by instead using 
setAttribute again to give our link a class. So, let’s scratch out 
those two styling lines and add one setting a class in their place.

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

firstParagraph.appendChild( newLink );

Now we can style .more-link in our stylesheets as usual:

.more-link {
  display: inline-block;
  margin-left: 10px;
}

Much better (FIG 5.4). It’s worth keeping in mind for the 
future that using setAttribute this way on a node in the DOM 
would mean overwriting any classes already on the element, 
but that’s not a concern where we’re putting this element 
together from scratch. 

Now we’re ready to move on to the second item on our to-do 
list: hiding all the other paragraphs.

Since we’ve made changes to code we know already worked, 
be sure to reload the page to make sure everything is still work-
ing as expected. We don’t want to introduce a bug here and 
continue on writing code, or we’ll eventually get stuck digging 
back through all the changes we made. If everything has gone 
according to plan, the page should look the same when we 
reload it now.

FIG 5.4: No visible changes, but this change keeps our styling decisions in our CSS and our 
behavioral decisions in JavaScript.

105DOM Scripting



firstParagraph.appendChild( newLink );

Your Read More link should still be kicking around in the 
first paragraph as usual, and your console should be rich with 
filler text (FIG 5.5).

Now we have to hide those paragraphs with display: none, 
and we have a couple of options: we could use a class the 
way we did before, but it wouldn’t be a terrible idea to use 
styles in JavaScript for this. We’re controlling all the hiding 
and showing from our script, and there’s no chance we’ll want 
that behavior to be overridden by something in a stylesheet. 
In this case, it makes sense to use the DOM’s built-in methods 
for applying styles:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

for( var i = 0; i < allParagraphs.length; i++ ) {
  allParagraphs[ i ].style.display = "none";
}

firstParagraph.appendChild( newLink );

If we reload the page now, everything is gone: our JavaScript 
loops through the entire list of paragraphs and hides them all. 
We need to make an exception for the first paragraph, and that 
means conditional logic—an if statement, and the i variable 
gives us an easy value to check against:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

FIG 5.5: Looks like our loop is doing what we expect.

JAVASCRIPT FOR WEB DESIGNERS106



newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

for( var i = 0; i < allParagraphs.length; i++ ) {

  if( i === 0 ) {
    continue;
  }
  allParagraphs[ i ].style.display = "none";
}

firstParagraph.appendChild( newLink );

If this is the first time through of the loop, the continue 
keyword skips the rest of the current iteration and then—unlike 
if we’d used break—the loop continues on to the next iteration.

If you reload the page now, we’ll have a single paragraph 
with a Read More link at the end, but all the others will be 
hidden. Things are looking good so far—and if things aren’t 

firstParagraph.appendChild( newLink );

Your Read More link should still be kicking around in the 
first paragraph as usual, and your console should be rich with 
filler text (FIG 5.5).

Now we have to hide those paragraphs with display: none, 
and we have a couple of options: we could use a class the 
way we did before, but it wouldn’t be a terrible idea to use 
styles in JavaScript for this. We’re controlling all the hiding 
and showing from our script, and there’s no chance we’ll want 
that behavior to be overridden by something in a stylesheet. 
In this case, it makes sense to use the DOM’s built-in methods 
for applying styles:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

for( var i = 0; i < allParagraphs.length; i++ ) {
  allParagraphs[ i ].style.display = "none";
}

firstParagraph.appendChild( newLink );

If we reload the page now, everything is gone: our JavaScript 
loops through the entire list of paragraphs and hides them all. 
We need to make an exception for the first paragraph, and that 
means conditional logic—an if statement, and the i variable 
gives us an easy value to check against:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

FIG 5.5: Looks like our loop is doing what we expect.

107DOM Scripting



looking quite so good for you, double-check your console to 
make sure nothing is amiss.

DOM EVENTS
Okay, one last thing to do: we need our Read More link to do 
something. If you click on it now, it just jumps you back to the 
top of the page and adds a hash to the URL.

In terms of failure-proofing, we’re in a pretty safe situation 
with this script. No matter what kinds of mishaps might take 
place down the road—an error in one of our scripts, an error 
in a third-party script that we can’t control, or even an error in 
a user’s browser—the full text will be available.

We’re inserting the View More link with JavaScript instead 
of hard-coding it into the markup, so if JavaScript is unavail-
able to a user for any reason, there won’t be a useless link 
floating at the end of the first paragraph. We’re also relying 
on JavaScript to add the class that hides the other paragraphs, 
rather than hard-coding a class and hiding them through our 
stylesheets—because then, if a script should break, the content 
is still available to the user.

The idea of starting with something usable and layering 
JavaScript enhancements over that baseline is called progressive 
enhancement, and we’ll talk more about that in a bit. Right now, 
we have a script to finish.

DOM events are effectively an API for the activity taking 
place in a browser. This includes the user’s actions, CSS ani-
mations, and internal browser events like the point where an 
image is completely loaded, just to name a few.

We’re squarely in user event territory—we just need to be 
able to write some behavior for users who click our generated 
link. We don’t need to make a second trip to the DOM, or root 
through every link on the page—we already have a reference 
to our link, and we’ll use a built-in DOM method to listen for 
events: addEventListener.

So, let’s start by writing our function: when the link is 
clicked, what do we want to happen?

JAVASCRIPT FOR WEB DESIGNERS108



Well, first we want to show all the hidden paragraphs 
on the page, so we’ll need to change their styles back to  
display: block. Once we’ve shown all those paragraphs, 
a Read More link won’t make sense to the user—so after we 
show the full text, we’ll want remove that link from the DOM.

We’ll create a new function with the identif ier  
revealCopy, and for now we’ll just put a console.log in that 
function so we know everything is working. Then we’ll use  
addEventListener on newLink to listen for a click event.  
addEventListener accepts two arguments: a string with the 
event type we want to listen for—in this case "click"—and the 
function to be executed when that event takes place.

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function revealCopy() {
  console.log( "Clicked!" );
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

newLink.addEventListener( "click", revealCopy );

for( var i = 0; i < allParagraphs.length; i++ ) {
  if( i === 0 ) {
    continue;
  }
  allParagraphs[ i ].style.display = "none";
}

firstParagraph.appendChild( newLink );

So far, so good! Click on our generated link and you’ll get a 
Clicked! in your console.

109DOM Scripting



The browser is still following that link, though. That isn’t 
really a big deal now—since we’re setting that link’s href to a 
hash—but there might be times where we’re adding custom 
behaviors to real links, and we don’t want the browser jumping 
the user to a new page instead of showing any of our behavior.

Luckily, addEventListener gives us information about the 
user’s click event in the form of—you guessed it—an object. 
And just as you might expect, that object contains a number of 
properties about the event, and methods we can use to control 
the browser’s behavior. That event object is passed along as an 
argument, but we can’t use it until we give it an identifier—the 
common convention is e, short for “event.” Let’s add that as an 
argument, and change our console.log to show us that object:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function revealCopy( e ) {
  console.log( e );
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

newLink.addEventListener( "click", revealCopy );

for( var i = 0; i < allParagraphs.length; i++ ) {
  if( i === 0 ) {
    continue;
  }
  allParagraphs[ i ].style.display = "none";
}

firstParagraph.appendChild( newLink );

JAVASCRIPT FOR WEB DESIGNERS110



Now we’ll get a cryptic looking object in our console when 
we click on that generated link:

MouseEvent {dataTransfer: null, which: 1, toElement: 
a.more-link, fromElement: null, y: 467…}

There’s a lot going on in there, but we’re only going to need 
one method from that event object: e.preventDefault(), 
which prevents the browser’s default behavior when an event 
takes place—in this case, following a link. That function can 
appear anywhere in the function that’s bound to an event—as 
long as it exists in revealCopy somewhere, the browser won’t 
attempt to follow our link.

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function revealCopy( e ) {
  e.preventDefault();
};

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";

newLink.addEventListener( "click", revealCopy );

for( var i = 0; i < allParagraphs.length; i++ ) {
  if( i === 0 ) {
    continue;
  }
  allParagraphs[ i ].style.display = "none";
}

firstParagraph.appendChild( newLink );

111DOM Scripting



Now the hash in the link’s href will be ignored completely. 
Even if we were to change newLink.setAttribute( "href", 
"#" ) to point to a real URL, clicking on the link wouldn’t 
take you anywhere. Perfect—now we just need our function 
to…y’know, do things.

Since we’ll need to change the display property of each 
hidden paragraph back to a visible display value—like block—
we’ll need to loop through them again. For now, we can just 
copy and paste our allParagraphs variable and correspond-
ing loop into the function, and change the display value to 
"block".

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function revealCopy( e ) {
  var allParagraphs = document.getElementsByTagName(  

  "p" );

  for( var i = 0; i < allParagraphs.length; i++ ) {
    if( i === 0 ) {
      continue;
    }
    allParagraphs[ i ].style.display = "block";
  }
  e.preventDefault();
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";
newLink.addEventListener( "click", revealCopy );

JAVASCRIPT FOR WEB DESIGNERS112



for( var i = 0; i < allParagraphs.length; i++ ) {
  if( i === 0 ) {
    continue;
  }
  allParagraphs[ i ].style.display = "none";
}

firstParagraph.appendChild( newLink );

Copying and pasting code that way isn’t very DRY, but it 
does work—and we can clean things up a little once we’ve 
got everything working. Give this a try now, and we’re almost 
done: all paragraphs but the first one are hidden once the page 
finishes loading, and they’re all revealed again when we click 
on that link. 

We have one more thing to do: we should remove the Read 
More link from the DOM once clicked, since it won’t do any-
thing anymore. This is pretty painless: there’s a remove method 
built into to each DOM node, and it does exactly what you 
might expect.

First, though, we need a reference to the Read More link 
we’re removing. We won’t need to make another trip to the 
DOM for that: the this keyword inside a function that’s 
attached to an event refers to the element that initiated the 
event. Inside revealCopy, this refers to our Read More node, 
and we’ll call remove() on it:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function revealCopy( e ) {
  var allParagraphs = document.getElementsByTagName(  

  "p" );

113DOM Scripting



  for( var i = 0; i < allParagraphs.length; i++ ) {
    if( i === 0 ) {
      continue;
    } 

    allParagraphs[ i ].style.display = "block";
  }
  this.remove();
  e.preventDefault();
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";
newLink.addEventListener( "click", revealCopy );

for( var i = 0; i < allParagraphs.length; i++ ) {
  if( i === 0 ) {
    continue;
  }
  allParagraphs[ i ].style.display = "none";
}

firstParagraph.appendChild( newLink );

It works! We have reached minimum viable product, here—
this isn’t the neatest code ever, but we’ve built exactly what we 
were aiming to build. No gold stars awarded just yet, but at least 
we’re all getting a participant ribbon.

Now we can optimize.
Remember how we copied and pasted that loop? There’s 

some room for improvement there: we already have a function 
that loops through all our paragraphs and changes the display 
property on all but the first one, and functions are all about 
reuse. Since there are two situations where we’ll need to change 
that display property—to none initially, and to block when our 
link is clicked—we’ll refactor that function to serve both cases.

First things first: we should change the name of that func-
tion. We won’t just be using it to reveal our paragraphs; we’ll 

JAVASCRIPT FOR WEB DESIGNERS114



be using it to hide them as well. Since we’re toggling those 
paragraphs’ visibility, we’ll change the identifier and update 
the reference inside addEventListener to match—toggleCopy 
makes sense to me. Then, let’s try calling that function in place 
of our original loop:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function toggleCopy( e ) {
  var allParagraphs = document.getElementsByTagName(  

  "p" );

  for( var i = 0; i < allParagraphs.length; i++ ) {
    if( i === 0 ) {
      continue;
    }
    allParagraphs[ i ].style.display = "block";
  }
  this.remove();
  e.preventDefault();
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";
newLink.addEventListener( "click", toggleCopy );

toggleCopy();

firstParagraph.appendChild( newLink );

Uh oh.

Uncaught TypeError: this.remove is not a function

115DOM Scripting



We’ve built a few assumptions into our function. JavaS-
cript is expecting this to reference a DOM node that has a 
remove() method—that won’t apply outside of our event. Our 
script didn’t get as far as the line after, but that would cause an 
error too—again, the function assumed an e argument with a  
preventDefault method attached, which won’t exist if we’re 
not calling this function in response to an event. e has an iden-
tifier, but without addEventListener to give it an object, it’s 
just an identifier that contains undefined.

First we’ll deal with the error in our console. We need to 
make sure this is a reference to the link we’ve conjured up, and 
if so, remove it. That’s an easy one: we already have a reference 
to the Read More—the newLink identifier. We’ll just make sure 
this and newLink are equal.

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function toggleCopy( e ) {
  var allParagraphs = document.getElementsByTagName(  

  "p" );

  for( var i = 0; i < allParagraphs.length; i++ ) {
    if( i === 0 ) {
      continue;
    }
    allParagraphs[ i ].style.display = "block";
    }

    if( this === newLink ) {
      this.remove();
    }

  e.preventDefault();
}

JAVASCRIPT FOR WEB DESIGNERS116



newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";
newLink.addEventListener( "click", toggleCopy );

toggleCopy();

firstParagraph.appendChild( newLink );

That’s one error down, but here’s that preventDefault issue 
we’ve been expecting:

Uncaught TypeError: Cannot read property 
'preventDefault' of undefined

When we invoke toggleCopy without an argument, e gets 
a value of undefined—and undefined definitely doesn’t have 
a preventDefault method. That undefined default value 
means that the e identifier gives us just what we need to get 
our function back in working order: a condition we can test 
for. We’ll only invoke e.preventDefault if e doesn’t have a 
value of undefined:

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function toggleCopy( e ) {
  var allParagraphs = document.getElementsByTagName(  

  "p" );

  for( var i = 0; i < allParagraphs.length; i++ ) {
    if( i === 0 ) {
      continue;
    }
    allParagraphs[ i ].style.display = "block";
  }

117DOM Scripting



  if( this === newLink ) {
    this.remove();
  }

  if( e !== undefined ) {
    e.preventDefault();
  }
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";
newLink.addEventListener( "click", toggleCopy );

toggleCopy();

firstParagraph.appendChild( newLink );

Now we’re error-free, but we’re still making a big assumption 
here—if we were to pass this function an argument when invok-
ing it outside of an event, e wouldn’t be undefined. e would 
take on the value of the argument, which very likely wouldn’t 
have a preventDefault method, and then we’d have an error 
on our hands. We know better than to chuck a stray argument 
into toggleCopy because, well, we built the thing—we know 
it wouldn’t do anything of value. There’s certainly no harm in 
doing a little error-proofing for the sake of whomever ends up 
maintaining our code after us.

Just to be extra safe, we’ll make our conditional a little more 
explicit: first, see if there’s an argument at all. If there is, see 
if that argument has a preventDefault method. Since we’re 
checking against two values that both need to evaluate to true, 
we’ll use &&.

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

JAVASCRIPT FOR WEB DESIGNERS118



function toggleCopy( e ) {
  var allParagraphs = document.getElementsByTagName(  

  "p" );

  for( var i = 0; i < allParagraphs.length; i++ ) {
    if( i === 0 ) {
      continue;
    }
    allParagraphs[ i ].style.display = "block";
  }

  if( this === newLink ) {
    this.remove();
  }
  if( e !== undefined && e.preventDefault !==  

  undefined ) {
    e.preventDefault();
  }
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";
newLink.addEventListener( "click", toggleCopy );

toggleCopy();

firstParagraph.appendChild( newLink );

Still no errors; all is well.
Nothing is hidden either, though—we’re still just setting 

display to block. What we need to do is set those elements 
to block only if they’re already hidden—we’ll need one more 
if that checks to see if the paragraph’s display property is set 
to none and, if so, set it to block. For any other value, we’ll set 
that value to none.

119DOM Scripting



var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function toggleCopy( e ) {
  var allParagraphs = document.getElementsByTagName(  

  "p" );

  for( var i = 0; i < allParagraphs.length; i++ ) {
    if( i === 0 ) {
      continue;
    }
    if( allParagraphs[ i ].style.display === "none" ) {
      allParagraphs[ i ].style.display = "block";
    } else {
      allParagraphs[ i ].style.display = "none";
    }
  }

  if( this === newLink ) {
    this.remove();
  }

  if( e !== undefined && e.preventDefault !==  
  undefined ) {

    e.preventDefault();
  }
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );
newLink.innerHTML = "Read more";
newLink.addEventListener( "click", toggleCopy );

toggleCopy();

firstParagraph.appendChild( newLink );

JAVASCRIPT FOR WEB DESIGNERS120



Working again! One more little thing, though: we’re repeat-
ing allParagraphs[ i ] over and over when we could just be 
referencing it by a single identifier.

We’re nit-picking a little now, but what could it hurt?

var newLink = document.createElement( "a" );
var allParagraphs = document.getElementsByTagName( 

"p" );
var firstParagraph = allParagraphs[ 0 ];

function toggleCopy( e ) {
  var allParagraphs = document.getElementsByTagName(  

  "p" );

  for( var i = 0; i < allParagraphs.length; i++ ) {
    var para = allParagraphs[ i ];

    if( i === 0 ) {
      continue;
    }
    if( para.style.display === "none" ) {
    para.style.display = "block";
    } else {
    para.style.display = "none";
    }
  }

  if( this === newLink ) {
    this.remove();
  }

  if( e !== undefined && e.preventDefault !==  
  undefined ) {

    e.preventDefault();
  }
}

newLink.setAttribute( "href", "#" );
newLink.setAttribute( "class", "more-link" );

121DOM Scripting



newLink.innerHTML = "Read more";
newLink.addEventListener( "click", toggleCopy );

toggleCopy();

firstParagraph.appendChild( newLink );

And while we’re at it, we’re polluting the global scope a 
little—all of these variables are getting added to window, since 
they’re not in an enclosing function. Try it out for yourself in 
the console:

window.newLink
<a></a>

We don’t want to clutter up the global scope. Let’s wrap this 
whole thing in a function; and since we don’t to reference it out-
side of the moment the page is loaded, we don’t need to give it 
an identifier—we’ll wrap all of our JavaScript in an anonymous 
function that executes it right away, called an immediately-in-
voked functional expression or IIFE. The syntax is a little strange 
and can be written in a couple of different ways, but the usual 
gist is this: by wrapping an anonymous function in parentheses, 
we tell JavaScript that any instance of the function keyword 
is an expression, not a declaration—invoking a function, not 
potentially defining one with an identifier. We then follow that 
up with a matched set of parentheses—()—to kick that newly 
created function off right away.

We’re into slightly academic territory here, truth be told: the 
IIFE pattern is important for sure, but we don’t need to know 
how JavaScript feels about parentheses to make use of it. For 
now, we can take it at face value.

(function() {
  var newLink = document.createElement( "a" );
  var allParagraphs = document.getElementsByTagName(  

  "p" );
  var firstParagraph = allParagraphs[ 0 ];

JAVASCRIPT FOR WEB DESIGNERS122



  function toggleCopy( e ) {
    var allParagraphs = document.getElementsByTagName(  

    "p" );

    for( var i = 0; i < allParagraphs.length; i++ ) {
      var para = allParagraphs[ i ];

      if( i === 0 ) {
        continue;
      }
      if( para.style.display === "none" ) {
        para.style.display = "block";
      } else {
        para.style.display = "none";
      }
    }

    if( this === newLink ) {
      this.remove();
    }

    if( e !== undefined && e.preventDefault !==  
    undefined ) {

      e.preventDefault();
    }
  };

  newLink.setAttribute( "href", "#" );
  newLink.setAttribute( "class", "more-link" );
  newLink.innerHTML = "Read more";
  newLink.addEventListener( "click", toggleCopy );

  toggleCopy();

  firstParagraph.appendChild( newLink );
}());

Now, if we punch window.newLink into our developer con-
sole, we get back undefined—we’re not polluting the global 

123DOM Scripting



scope with identifiers we’ll never need to access outside the 
scope of our IIFE.

window.newLink
undefined

Perfect.
Well, okay. Not perfect—in fact, probably never perfect. There 

are always more tweaks we can make to a script, tiny optimiza-
tion after tiny optimization and so on unto infinity. But this is 
pretty damn good, if I do say so myself: we’re being responsible 
about polluting the global scope, we’re being DRY throughout 
our code, and we’ve written something that will be easy to 
read and maintain long after we’ve moved on to bigger and 
better scripts.

PROGRESSIVE ENHANCEMENT
Scripting behavior in a responsible way isn’t always easy. We’re 
standing in for the browser, taking over the user’s experience 
of something as common and predictable as clicking on a link. 
Done in an unobtrusive way, we’re able to create a completely 
fluid experience—better, in many ways, than the browser itself 
could. 

If we don't do it responsibly, though, we’ve done something 
far worse than simply presenting the user with a misaligned 
div—we’ve built something they might not be able to use at 
all. The web is an unpredictable medium, and we have to plan 
for that—when writing JavaScript more so than HTML or CSS, 
by a wide margin.

We could have cut some corners in the paragraph-toggling 
script we built today, for example. We could have hidden those 
paragraphs at the outset using CSS and relied on JavaScript 
to show them again, or hard-coded the Read More link and 
assumed the functionality in our script would always be avail-
able. The latter case would be a nuisance if anything went 
wrong—an error elsewhere in a script causing ours to fail, for 
example. The user would be left with a Read More link that 

JAVASCRIPT FOR WEB DESIGNERS124



didn’t do anything. The former case would be far more dire: in 
the event that JavaScript failed in any way, the user would be 
left with no way to access the contents of the page.

A site that fully relies on JavaScript for critical function-
ality—a website built on the expectation that JavaScript will 
always run, no matter what—is a fragile one. Users’ browsing 
conditions can change minute to minute, and we can’t plan for—
we can’t know—the ways that our scripts might break down.

A handful of years ago I worked on the responsive Boston 
Globe site with Ethan Marcotte, Scott Jehl, and the whole crew 
at Filament Group. It was built with progressive enhancement 
in mind, which didn’t hold us back in the least—there are some 
incredible features on that site, if you don’t mind my saying so 
(https://www.bostonglobe.com/).

We got to solve some tricky problems on that project, but 
made sure we were doing so with progressive enhancement 
squarely in mind—“If and when this feature fails, how do we 
ensure the user still has access to the underlying information?” 
On the surface, that may seem like an exercise in edge cases. 
The tiny decisions that go into building a website don’t neces-
sarily feel like a big deal at the time.

The Boston Marathon bombings happened a few years later. 
Being able to reach up-to-date information on what was hap-
pening throughout the city was tremendously important to a 
huge number of people that day, and many of them looked to 
the Boston Globe for that. Due to the increased traffic, the Bos-
ton Globe’s CDN—the server that delivers assets like CSS and 
JavaScript—was overwhelmed, and went down. For a period of 
time that afternoon, the Boston Globe’s website was HTML-only.

The website looked broken, and none of our advanced Java-
Script features were there consistently: no offline reading, no 
dropdown menus in the navigation. Sometimes the whole 
site was just black Times New Roman on a white background. 
Sometimes only the CSS would come through, or some part of 
it—likewise with the JavaScript. Rarely did any of our scripts 
run without errors, through no fault of our own.

But visitors to BostonGlobe.com that afternoon could still 
navigate the site. They could still read the news. The website 
worked. If we’d relied on CSS to hide parts of the navigation 

125DOM Scripting

https://www.bostonglobe.com/


and assumed JavaScript would always be there to reveal them 
again, some users wouldn’t have been able to navigate that day. 
If we’d relied on JavaScript to fetch and render critical parts of 
the page, that content might never have appeared. If we’d hard-
coded controls that required JavaScript in order to do anything 
at all, they would have been useless—confusing and frustrating 
for the site’s users at the worst imaginable time.

Progressive enhancement is yet another thing we’ll need 
to factor in when we’re writing our JavaScript. To be honest, 
progressive enhancement will sometimes mean doing more 
work—but that’s the craft. The decisions that went into writing 
the JavaScript for BostonGlobe.com could have seemed incon-
sequential in the grand scheme of things, but on that day—for 
tens of thousands of users—those decisions added up to some-
thing huge. For those users, progressive enhancement meant 
the difference between finding the information they needed 
right away, or being forced to keep searching for it—between 
knowing and not knowing.

JAVASCRIPT FOR WEB DESIGNERS126



CONCLUSION

CONCLUSION
We’ve come a long way, from “Hello, world” to a script that 
accepts user input and changes the entire page.

This has been a hell of a lot of JavaScript over a short number 
of pages, so if you didn’t catch every single definition or punch 
every snippet of code into your console, don't sweat it. The 
goal was never absolute mastery over JavaScript, after all. As 
promised, we’ve only just barely scratched the surface of all the 
things JavaScript can do. And JavaScript is constantly evolving, 
like any other web standard—we can’t know it all, and we’ll 
never have to. To this day, I spend a lot of time searching the 
web for the best way to do X or Y with JavaScript.

But for all the exciting new APIs and features and powers 
over the browser that JavaScript grants us—or will grant us, 
someday—the basics won’t change. An array is an array; an 
event is an event. Anything you’ve read here is something 
you’ll be able to use, something you’ll be able to point to and 
recognize when you’re looking at a script someone else wrote.

You don’t suddenly have a special programmer-brain by 
reaching this point, because nobody does. That isn’t what 
makes a developer. What makes a developer is a curiosity, a will-
ingness to learn, and maybe the drive to solve a puzzle or two.

If you’re here, reading this, you’re already on your way.

127



RESOURCES
So, where to from here? An entire programming language is 
sprawling out before you. Well, there are plenty more books 
to read—and read them you should—but now that you know 
what to look for, there’s no substitute for reading code. Take a 
little time to read through the scripts you’ve seen flying around 
a project at work, or dig into the code that powers your favorite 
open source tools. There’ll be a lot more going on than we’ve 
covered here, but I bet you’ll recognize more than you think.

Next steps

•	 Mozilla Developer Network. If you’ve made it this far, it’s 
time I revealed the secret to a successful career in profes-
sional JavaScript development: cheating. JavaScript is too 
much for any mortal to commit to memory. When the 
time comes to look something up, whether it’s about cap-
italization or browser support—and that time will come, 
more than once per day—MDN is the place to do it (http:// 
bkaprt.com/jsfwd/07-01/).

•	 Responsible Responsive Design, Scott Jehl. Progressive 
enhancement is a concept we barely touched on, but it 
formed the foundation for the script we built. JavaScript 
enhancements aren’t always guaranteed to be available to 
your users, and not just because users have turned it off at 
the browser (though some do). Responsible Responsive Design 
is a closer look at inclusive front-end development practices, 
from progressive enhancement to accessibility to perfor-
mance (http://bkaprt.com/jsfwd/07-02/).

•	 If Hemingway Wrote JavaScript, Angus Croll. You might 
not know it from my Twitter account, but I’m a pretty big 
fan of the written word. If Hemingway Wrote JavaScript is an 
imagined look at the coding styles of authors like Jane Austen 
and William Shakespeare, based on their writing. Not all of it 
is in JavaScript, but every language you’ll encounter is made 
of the principles you’ll be familiar with now. It’s a fun way 
to look at the signatures people leave on their code (http://
bkaprt.com/jsfwd/07-03/).

JAVASCRIPT FOR WEB DESIGNERS128

http://bkaprt.com/jsfwd/07-01/
http://bkaprt.com/jsfwd/07-01/
http://bkaprt.com/jsfwd/07-02/
http://bkaprt.com/jsfwd/07-03/
http://bkaprt.com/jsfwd/07-03/


RESOURCES

Digging deeper

Now you’ve got enough of a foundation to get into JavaScript 
in a major way. If you’re champing at the bit to learn more 
advanced JavaScript and you’re excited to keep on unraveling 
JavaScript puzzles, I’ve got more reading material to share.

•	 Eloquent JavaScript, Marijn Haverbeke. You won’t find the 
tenor of this book terribly unfamiliar, unless you skipped 
right to the end of the one you’re reading now: Marjin draws 
a similar path through the concepts of JavaScript, though 
they’re going to come at you a little faster and in grittier 
detail http://eloquentjavascript.net/).

•	 JavaScript Patterns, Stoyan Stefanov. I’ve come back to this 
book a few times over the course of my career. I’d read 
through it until I felt like I’d gotten a little lost, then put 
it down for a while. With time and experience, I’d end up 
landing a little further into the book each time—and, in 
doing so, find countless ways to reexamine parts of JavaS-
cript I thought I knew inside and out (http://bkaprt.com/
jsfwd/07-04/).

•	 Effective JavaScript: 68 Specific Ways to Harness the Power 
of JavaScript, David Herman. Like others in this list, Effec-
tive JavaScript isn’t the lightest read. It is, however, a highly 
approachable follow-up to the concepts we’ve covered 
together, all packaged up as an indispensable list of best 
practices and useful advice (http://effectivejs.com/).

129

http://eloquentjavascript.net/
http://bkaprt.com/jsfwd/07-04/
http://bkaprt.com/jsfwd/07-04/
http://effectivejs.com/


ACKNOWLEDGMENTS
Man, this section is something I never thought I’d end up writ-
ing. Same goes for the rest of the book, if I’m being honest. I 
guess I should’ve known better, though. I should’ve seen this 
all coming.

Not because of me—God, no—but because of the people 
who’ve helped me with my writing, with my speaking, with 
landing a job with a desk, with everything. With those people 
supporting me—with their brilliance, their kindness, and their 
willingness to curse me out as needed—even a scrub like me 
had a chance to do something like this.

Katel LeDû, Jeffrey Zeldman, and Jason Santa Maria: you’ve 
built something incredible in A Book Apart, and I am tremen-
dously honored to have been able to play some small part in it. 
I’ll never be able to thank you enough for this opportunity.

Peter Richardson and Mike Pennisi, I can’t imagine two 
better people to put to rest the haunting feeling that I’d flubbed 
a term, dropped a semicolon, or—horror of horrors—mistaken 
undefined for a function. I owe you one, for every “actually” I 
don’t hear after this goes to print.

Erin Kissane, without you involved, there was no way I 
could’ve worded goodly enough for book-making. Knowing 
that you would be my lead editor, after admiring so much of 
your work over the years—it might’ve been the first time I felt 
like I could actually pull this thing off.

To the crews at Bocoup and Filament Group, past and pres-
ent: I wouldn’t have had anything to write about if I hadn’t been 
fortunate enough to learn from so many brilliant and respon-
sible JavaScripters. I only hope I’ve managed to do you proud.

LMM, it is rad that you edited my book. It is radder that 
you are my girlfriend. It is radder still that you remained my 
girlfriend, y’know, despite having to work with me on my 
book. I couldn’t have done this without you. I couldn’t do 
damn near anything without you. Thank you for so, so much; 
for everything.

JAVASCRIPT FOR WEB DESIGNERS130



ACKNOWLEDGMENTS

Lastly, hey, Ma—remember the time Dad told me to “get 
something published” for him, a couple years back? Between 
that and “we should fix up an old bike someday,” he’s still a 
pain in the ass.

I guess one out of two ain’t bad.

131



REFERENCES
Shortened URLs are numbered sequentially; the related long 
URLs are listed below for reference. 

Introduction

00-01	 https://www.w3.org/community/webed/wiki/A_Short_History_of_ 
JavaScript

00-02	 https://css-tricks.com/dom/

Chapter 1

01-01	 https://abookapart.com/products/responsible-responsive-design

01-02	 https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_
loop

Resources

07-01	 https://developer.mozilla.org/en-US/

07-02	 https://abookapart.com/products/responsible-responsive-design

07-03	 https://www.nostarch.com/hemingway

07-04	 http://shop.oreilly.com/product/9780596806767.do

JAVASCRIPT FOR WEB DESIGNERS132

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://css-tricks.com/dom/
https://abookapart.com/products/responsible-responsive-design
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://developer.mozilla.org/en-US/
https://abookapart.com/products/responsible-responsive-design
https://www.nostarch.com/hemingway
http://shop.oreilly.com/product/9780596806767.do


INDEX

INDEX

A

alert()  16–17
API  5
arguments  49
arrays  37–41, 79
ASI  20–21
async  10–11

B

blocking requests  10–11
Boolean  30, 56, 60, 65
Boston Globe  125
Boston Marathon  125
brackets  40–43
break  89–91, 107

C

case-sensitivity  20, 67
Chrome  13–15
comments  22

single-line  22–23
condition  86
console  14–19
continue  89–91, 107
Croll, Angus  128

D

data types
number  25
primitive  25

debugging  14–18
defer  11
dev tools  13–14
DOM  5, 92–96

events  108–124
scripting  97–107
tree  6

DOM API  96
DRY  60, 68, 74, 113

E

equality  58
expressions

grouping  65

F

Filament Group  125
Flickr  5
functions  48–53

G

Geocities  16
global scope  122

H

hasOwnProperty  84–86
Haverbeke, Marijn  129
Herman, David  129
HTML5  8

I

identifiers  34–36, 102
if/else  54–58
IIFE  122–124
indexes  38
inequality  61–63
Internet Explorer  18
interpreter  2

J

Jehl, Scott  11, 125, 128
jQuery  5

K

key/value  43
keywords  35

L

LiveScript  2
loops  75, 106

do/while  87–89
for  75–78
for/in  78–80, 84
infinite  91
while

133



M

Mac  14
Marcotte, Ethan  125
Modernizr  10
Mozilla Developer Network  128

N

NaN  24, 59
node  5
node lists  95, 105
notation

bracket  45–48, 79
dot  45–47
object literal  44–45

null  30

O

object types  31, 52–53
window  92–94

operator
comparison  58
logical  64
logical NOT  61–62
relational  63–64

Order of Operations  26

P

parentheses  41
PC  14
presentational layer  3
progressive enhancement  108, 

124–126, 128
properties  43

prototype  80–84
prototypal inheritance  80

R

refactor  61
REPL  14, 18–19, 33

S

script
external  8, 11–12
loading  11
placement  9
remote  9

semicolons  20–21
statements

conditional  54–58
control flow  53
switch  69–74

Stefanov, Stoyan  129
strings  27–29

concatenation  29, 50
structural layer  3
stylesheet  7–9, 97
syntax

errors  15
highlighting  13, 35

T

text editor  12–13
type coercion  25, 50

U

undefined  29, 33
using parentheses  66

V

validation  3
values

falsy  59–61
truthy  59–61

variables  31–37
variable scope  36–37

global  36
local  36

W

white space  21
whitespace  44

Z

zero-indexed  39, 43

JAVASCRIPT FOR WEB DESIGNERS134



ABOUT THE AUTHOR

Mat “Wilto” Marquis makes 
websites for a living, and curses 
at his broken-down motorcycle 
for free, on the streets of north 
Cambridge. He is the chair of 
the Responsive Issues Commu-
nity Group, a technical editor at 
A List Apart, a former member 
of the jQuery team, and an edi-
tor of the HTML5 specification. 
Of all these things, Mat is most 

proud of having finished Mega Man 2—on “difficult”—without 
losing a single life.



ABOUT A BOOK APART
We cover the emerging and essential topics in web design and 
development with style, clarity, and above all, brevity—because 
working designer-developers can’t afford to waste time.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans, 
both by Xavier Dupré. Headlines and cover are set in Titling 
Gothic by David Berlow.


	Cover
	Introduction
	Chapter 1. Getting Set Up
	Chapter 2. Understanding Data Types
	Chapter 3. Conditional Statements
	Chapter 4. Loops
	Chapter 5. DOM Scripting
	Conclusion
	Resources
	Acknowledgments
	References
	Index
	About the Author
	About A Book Apart



