
NoBrief books for people who make websites

15

FOREWORD BY Mandy Brown

RESPONSIVE DESIGN:

PATTERNS &
PRINCIPLES

Ethan Marcotte

MORE FROM A BOOK APART

Designing for Touch
Josh Clark

Responsible Responsive Design
Scott Jehl

You’re My Favorite Client
Mike Monteiro

On Web Typography
Jason Santa Maria

Sass for Web Designers
Dan Cederholm

Just Enough Research
Erika Hall

Content Strategy for Mobile
Karen McGrane

Design Is a Job
Mike Monteiro

Mobile First
Luke Wroblewski

Designing for Emotion
Aarron Walter

Responsive Web Design
Ethan Marcotte

Visit abookapart.com for our full list of titles.

http://www.abookapart.com

Copyright © 2015 Ethan Marcotte
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Executive Director: Katel LeDû
Editor: Erin Kissane
Technical Editor: Anna Debenham
Copyeditor: Nicole Fenton
Proofreader: Lisa Maria Martin
Compositor: Rob Weychert
Ebook Producer: Ron Bilodeau

ISBN: 978-1-9375573-4-8

A Book Apart
New York, New York
http://abookapart.com

10 9 8 7 6 5 4 3 2 1

http://www.abookapart.com

TABLE OF CONTENTS

Chapter 1

	 1 	 |	 Starting Small

Chapter 2

	 1 6 	 |	 Navigation

Chapter 3

	 5 7 	 |	 Images and Videos

Chapter 4

	 91 	 |	 Responsive Advertising

Chapter 5

	 1 1 3 	 |	 Designing the Infinite Grid

	 1 49 	 | 	 Resources

	 1 51 	 | 	 Acknowledgements

	 1 5 2 	 | 	 References

	 1 5 8 	 | 	 Index

FOREWORD
ETHAN MARCOTTE DIDN’T INVENT responsive web design. He
did something much more important: he named it. He observed
what was, at the time, a sprawling set of nascent tactics and
identified among them an underlying strategy which, once
named, became not just a way of doing web design, but the way
of doing it. In the intervening years, the phrase “responsive
web design” has become one of the few entries in the industry
lexicon to find widespread adoption beyond the field, demon-
strating not only the soundness of the methods but also the
clarity and persuasiveness of the phrase. I was speaking to a
carpenter recently when he confessed—unbidden—that it was
important to him that his website be responsive.

That’s the power of a great name.
Here Marcotte turns to words again, but this time to slay

one: the page is dead. It was terminal the moment the first web-
site came online, of course, but it’s been a long, slow decline,
marked by many moments in which it seemed to have rallied.
As recently as five years ago, when Responsive Web Design was
first published, designing web “pages” was understood to be
core to the job. Since then, a deceptively subtle transformation
has occurred: we’ve abandoned pages for modular components,
ditching that dusty metaphor from print days for an organiza-
tional system much more attuned to the shifty world of the
screen. Like those before, this transformation requires that we
evolve both our technical approach and our mental model for
designing experiences on the web—that is, both the code and
the language we use to talk about it.

Marcotte has you covered on both fronts. As with Responsive
Web Design, this book describes a series of smart and efficient
technical strategies that you can put to work right away. (And
you’d best do so quickly.) But it also suggests a compelling
conceptual framework for thinking about a more modular web,
leaving the page behind for good. With millions of devices and
an impossible number of screens, it’s about time.

—Mandy Brown

1STARTING SMALL

My anxiety doesn’t come from thinking about the
future, but from wanting to control it.”
—HUGH PRATHER, Notes to Myself: My Struggle to Become a Person

THERE’S A TREE I want to show you.
This tree’s located in Pando, which you’ll find in Utah’s

Fishlake National Forest in the western United States (FIG 1.1).
(It’s a mile or two south of Fish Lake, if you know the area.)
And as you walk through Pando, searching for our tree, you’ll
pass hundreds of stunningly beautiful aspens, their white bark
smooth to the touch, their tops covered in puffs of gold in the
autumn, or a deep, rich green in the warmer months. As lovely
as these trees are, it’ll probably take you only an hour or two
of wandering to wonder where this “special” tree is, and how
it could possibly be more special than the thousands of other
trees in Pando.

Here’s the thing, though: I’ve misled you, if only a little.
Pando’s not a forest: it’s a tree. More specifically, it’s a single
quaking aspen.

STARTING SMALL1
“

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES2

You see, pando is the Latin word for “I spread.” More scien-
tifically, it’s known as a clonal colony: the “trees” around us are
really just stems, each sprouting up out of one massive under-
ground root system they all share. All told, Pando weighs some
six million kilograms, and covers more than one hundred acres.
Its age is a topic of some debate—the National Park Service sug-
gests Pando’s been around for over 80,000 years (http://bkaprt.
com/rdpp/01-02/), while some scientists put its age closer to one
million years (http://bkaprt.com/rdpp/01-03/)—but there’s no
question that Pando is one of the largest, heaviest, and oldest
known organisms on Earth.

…this is, I promise, a book about responsive design.
I love this story not just because of its details, but because

in recent years, we’ve started to see web design’s forest for its
trees. With the explosion of mobile computing, we realized that
our desktop-centric view of the web was entirely too narrow.

FIG 1.1: Welcome to Pando, where we’re looking for a very special tree. Photograph by J.
Zapell (http://bkaprt.com/rdpp/01-01/).

http://bkaprt.com/rdpp/01-02/
http://bkaprt.com/rdpp/01-02/
http://bkaprt.com/rdpp/01-03/

3STARTING SMALL

Our smaller screens reminded us that the web is the first truly
fluid design medium: one that can be digested on nearly infinite
combinations of browsers, display resolutions, input types, and
device classes. Responsive design—fluid grids, flexible images,
and media queries working in concert—can shape the web’s
flexibility in useful, beautiful ways.

Some time ago, Paravel’s Trent Walton described his pro-
cess of coming around to responsive design: how he’d transi-
tioned from eyeing flexible layouts with skepticism to designing
some of the loveliest responsive sites on the web. In his essay,
he relates that transition beautifully(http://bkaprt.com/rdpp/
01-04/):

I traded the control I had in Photoshop for a new kind of
control—using flexible grids, flexible images, and media que-
ries to build not a page, but a network of content that can be
rearranged at any screen size to best convey a message.

You’ll probably notice that Trent says “a new kind of control,”
not “less control,” which I love. He suggests that the flexibility
inherent in responsive design—or heck, the flexibility at the
heart of the web—doesn’t mean you have to sacrifice control,
aesthetics, or narrative. And the last few years have proven that
point handily: from nonprofits to publishers and corporations
to governments, the web has seen an explosion of stunning
responsive sites, accessible to people no matter how small (or
large) their screens might be (FIG 1.2–1.5).

As responsive design proliferates, Trent’s idea of “networks
of content” is more relevant than ever. In fact, the idea of
a “page,” that wonderful word we borrowed from print, is
increasingly irrelevant to our work. I’d argue that we’re no
longer building pages at all—instead, we need to think of our
responsive designs as a network of small layout systems (FIG 1.6).
Little pockets of design that can, as Trent says, “be rearranged
at any screen size to best convey a message.”

Here’s a quick example: open Google’s Year in Search 2014
(http://bkaprt.com/rdpp/01-14/) in a resizable browser (FIG 1.7).

http://bkaprt.com/rdpp/01-04/
http://bkaprt.com/rdpp/ 01-04/
http://bkaprt.com/rdpp/01-14/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES4

Fig 1.2: The Field Museum (http://bkaprt.com/rdpp/01-05/) and the National Audubon
Society (http://bkaprt.com/rdpp/01-06/) are stunning examples of well-designed
responsive nonprofit sites.

Fig 1.3: The New York Times (http://bkaprt.com/rdpp/01-07/) and Lapham’s Quarterly
(http://bkaprt.com/rdpp/01-08/) are among the many publishers going responsive.

5STARTING SMALL

Fig 1.4: Microsoft (http://bkaprt.com/rdpp/01-09/), Virgin America (http://bkaprt.com/
rdpp/01-10/), and Adobe (http://bkaprt.com/rdpp/01-11/) are a few well-known brands that
have tossed their hat in the responsive ring.

Fig 1.5: Government websites are investing in responsive in a big way, including AIDS.gov,
the GOV.UK (http://bkaprt.com/rdpp/01-12/), and the US Digital Service (http://bkaprt.
com/rdpp/01-13/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES6

Fig 1.6: Beyond pages: our interfaces are composed of tiny components, or small
layout systems.

Fig 1.7: Google’s Year in Search 2014 is a wonderful example of self-contained responsive
modules, each adapting according to its needs (http://bkaprt.com/rdpp/01-14/).

7STARTING SMALL

Change the size of the window, making the responsive design
wide, then small, and then back again. As you resize your
browser, you’ll notice that the entire design reshapes itself, its
fluid, grid-based layout working with media queries to respond
to the changing shape of its viewport. It’s a well-built piece of
responsive design, to say the least.

After you resize things a few times, you’ll notice not every-
thing changes at once: the design of lead stories remains rel-
atively unchanged, while secondary stories switch between
one- and two-column layouts (FIG 1.8–9). And the navigation
at the top of the screen undergoes a number of changes, each
independent of the content below it (FIG 1.10). In other words,
the individual components of the design change, not just the
overall layout. This is true of most responsive layouts: our
interfaces are composed of small layout systems, each with its
own rules for how it should change, shift, and grow according
to the needs of the content inside it. While these small layout
systems are lightly bound to the elements around them, each
of them often adapts independently of the rest of the design.

If you’ve read Responsive Web Design, this may feel like a bit
of a departure. After all, my last book focused on building a
page, not the individual components within it (http://bkaprt.
com/rdpp/01-15/). Over a few short chapters, it showed how to
translate pixel-based designs into fluid, grid-based layouts; how
to resize images within those flexible layouts; and finally, how
to use media queries to shape those sprawling, fluid designs
into finished responsive layouts.

But in many ways, the modules within our responsive pages
are more challenging than the layouts themselves. Designing a
responsive grid is wonderful, but how do we ensure our images
are as recognizable on the smallest screens as they are on the
widest ones? How can we possibly fit dense, complex naviga-
tion menus into fluid layouts? Can we incorporate advertising
into our responsive grids without sobbing heavily?

While flexible grids and media queries can answer some of
these questions, they’re only part of the solution. That’s why
this book takes a closer look at the challenges of these small

http://bkaprt.com/rdpp/01-15/
http://bkaprt.com/rdpp/01-15/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES8

Fig 1.8: The lead stories on Google’s Year in Search 2014 have only one breakpoint.

Fig 1.10: The navigation undergoes a few small but noticeable changes, increasing in visual
density as it widens.

Fig 1.9: Secondary stories change their grid layout across a few breakpoints.

9STARTING SMALL

layout systems, of the modules and elements contained within
the page. In each of the chapters that follow , we’ll examine an
especially challenging component—beginning with navigation,
exploring images and video, and finally, advertising. We’ll study
common (and uncommon) design approaches for each of these
modules, and discuss strategies for incorporating those ele-
ments into your own responsive designs. As we do, we’ll have
a better understanding not just of the challenges that await us
when designing more modularly, but of the rewards as well.

In many ways, modular design affords us—and our proj-
ects—some very tangible benefits. In describing how they
rebuilt Capital One’s layout in four weeks, developer Scott Childs
argued that a focus on components, not pages, was key (http://
bkaprt.com/rdpp/01-16/):

Even though it’s this massive number of pages, when you look
at 2,500 pages over 4,000 page configurations, everything boils
down to a couple things really. How many different components
do we have total? It’s around twenty components.

This component-driven focus on design has grown out of
a need for modularity in our work—especially as the scope
and complexity of the work increases. Joe Stewart, design
partner on Virgin America’s responsive redesign, suggested
that the benefits weren’t just about modularity (http://bkaprt.
com/rdpp/01-17/):

We made a system of Legos. We designed different box types,
different module types that could work at different sizes. They
could work for a tablet or a desktop or a phone and then within
there, the content can change. There’s a couple of good things
about that:

1.	Anything that you do will automatically be responsive.
Because if it fits in one of these modules, it will be responsive
because the module system itself is naturally responsive.

2.	The second good thing is Virgin America can now go make
whatever pages they want based on these Legos. They can
mix and match what’s going to work for them so they can

http://bkaprt.com/rdpp/01-16/
http://bkaprt.com/rdpp/01-16/
http://bkaprt.com/rdpp/01-17/
http://bkaprt.com/rdpp/01-17/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES10

have two big ones, three small ones, and four or whatever
it is. They forever will have this set of tools that is naturally
responsive to build out their site.

This talk of building interfaces out of smaller building blocks

has, in recent years, been accompanied by a renewed interest
in creating pattern libraries or style guides. I use the terms inter-
changeably, but whichever one you prefer, the meaning is the
same: they’re inventories of all the “blocks” used to build more
complex interfaces. Those reusable components—whether
they be colors, typefaces, form elements, or grid layouts—are
frequently referred to as design patterns, a nod to their reusable,
modular nature. Starbucks was one of the first large organiza-
tions to publish a public pattern library for its responsive site,
with other companies following suit in the years that followed
(FIG 1.11).

While this more modular, systems-driven approach to our
designs may feel like a shift, especially when compared to our

Fig 1.11: From Ushahidi (http://bkaprt.com/rdpp/01-18/) to MailChimp (http://bkaprt.
com/rdpp/01-19/), Starbucks (http://bkaprt.com/rdpp/01-20/) to A List Apart (http://
bkaprt.com/rdpp/01-21/), pattern libraries help us manage the components of our
responsive interfaces.

11STARTING SMALL

old, page-focused layout models, other industries have been
doing it for years. As MailChimp designer Federico Holgado
noted (http://bkaprt.com/rdpp/01-23/), fields as diverse as archi-
tecture, automotive manufacturing, and shipbuilding long ago
shifted their focus to becoming assemblers of finished components:
of building larger, more complex machines out of smaller, more
specialized parts (FIG 1.12). So while it may feel like a change to
those of us working on the web, it’s also incredibly useful: we
can build complex, responsive interfaces in a content-focused,
device-agnostic way, readying our designs for an ever-increas-
ing number of browsing contexts.

And frankly, we need to. Because in all honesty, it’s been a
weird few years for the web.

Fig 1.12: A small section of a massive ship, as seen during the boat’s construction.
Photograph by Adrian Jones (http://bkaprt.com/rdpp/01-22/).

http://bkaprt.com/rdpp/01-23/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES12

OKAY, SURE, I could’ve said that at any point in the web’s short
history. After all, the only constant about our odd little medium
is just how quickly everything changes. But speaking for myself,
it feels like the last few years have been especially, well, nuts
when it comes to device proliferation. A few highlights:

•	 Mobile is booming, with an estimated 7.4 billion devices
on the planet (http://bkaprt.com/rdpp/01-24/). It’s quickly
become the dominant way for people to access the web—and
for large parts of the world, in both developed and devel-
oping countries, mobile is the only way to access the web.

While the popularity of handheld devices shows no signs
of slowing down, “mobile” has not, as many predicted,
brought about the end of the desktop. Analytics and research
firm comScore found that mobile growth “is not coming
at the expense of desktop computer usage. [Much of that
growth] has been activity…incremental to what’s happening
on existing platforms” (http://bkaprt.com/rdpp/01-25/).

•	 It’s not just mobile that’s defied our expectations. Since the
launch of the iPad in 2010, we’ve seen the tablet market
explode, with hardware vendors scrambling to capitalize on
the massive popularity of Apple’s tablet. At 2011’s Consumer
Electronics Show alone, there were over eighty new tablet
PCs introduced (http://bkaprt.com/rdpp/01-26/).

More recently, there are signs that the tablet market’s
starting to soften, with everyone from mobile analysts
(http://bkaprt.com/rdpp/01-27/) to Best Buy’s CEO (http://
bkaprt.com/rdpp/01-28/) suggesting that tablet sales are start-
ing to flatten, if not declining outright.

•	 2014 was the year Glass, Google’s face-mounted sneezeguard
of a wearable computer, tried and failed to gain momentum
(http://bkaprt.com/rdpp/01-29/). Even still, there’s consider-
able interest in predicting the next big post-desktop develop-
ment, from internet-connected smart TVs to, more recently,
smart watches.

Now personally, I’m skeptical of smart watches as a
browsing environment. I’m sure that nobody’s going to
want to interact with long documents on such tiny screens,
and that these little devices are probably going to be more

http://bkaprt.com/rdpp/01-24/
http://bkaprt.com/rdpp/01-25/
http://bkaprt.com/rdpp/01-26/
http://bkaprt.com/rdpp/01-27/
http://bkaprt.com/rdpp/01-28/
http://bkaprt.com/rdpp/01-28/
http://bkaprt.com/rdpp/01-29/

13STARTING SMALL

useful as notification hubs, connecting other nearby devices
more effectively. But whenever I find myself cycling through
those objections, I catch myself—because I used to say the
same thing about phones. In fact, I was convinced nobody’d
ever want to browse the web on a tiny mobile screen. And
we already know how that turned out. In fact, many sites are
already using wrist-based browsers to great effect (FIG 1.13).

In other words, it seems that whenever we start to figure the
web out—even a little bit—the landscape shifts.

Although maybe it doesn’t so much shift as explode. Almost
each month, hardware and software vendors introduce new
interaction models for us to support in our designs (FIG 1.14).
New devices and browsing contexts continue to appear faster
than we can hope to keep up (FIG 1.15). And the network we
use to browse the web, publish our work, and connect with our
audiences is more widely accessed today than at any other point
in the web’s short history. But with sub-3G connections com-
prising the overwhelming majority of mobile data subscriptions,
that network is also far slower, more volatile, and less reliable

Fig 1.13: Want to browse a responsive site on an Android-based smartwatch? With the
Wear Internet Browser, you can (http://bkaprt.com/rdpp/01-30/). Video image from
YouTube (http://bkaprt.com/rdpp/01-31/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES14

than we might like to think (FIG 1.16). How can responsive
design possibly keep up with all of this? More to the point: as
responsive designers, how do we?

In this book, we’re going to try and answer those questions.
While each of the next few chapters focuses on a specific chal-
lenge to responsive designers—navigation, images and video,
and advertising—we won’t just be dissecting layout techniques
and code snippets. (Though there will be plenty of that, I prom-
ise.) As we look at patterns, we’ll discuss why they work, their
strengths, their weaknesses, and how you might refine them. In
the final chapter, we’ll review what we’ve learned and see how
we might stitch it together to build more flexible, lightweight
layouts—and maybe become more flexible designers, too. If we
do our job right, we’ll step out of the trees with a clearer view
of where we’ve been and where we’re going next.

Let’s get started.

Fig 1.14: Microsoft’s Windows 8.1 allows users to split their screen and resize apps to
comfortable positions (http://bkaprt.com/rdpp/01-32/).

15STARTING SMALL

Fig 1.15: In a 2009 Ofcom study, 20% of 16- to 24-year-olds in the UK said they used video
game consoles to visit websites (http://bkaprt.com/rdpp/01-33/). Photograph by Anna
Debenham (http://bkaprt.com/rdpp/01-34/).

Fig 1.16: Not as fast as we think: Ericsson estimates that more than 80% of the world’s data
connections are slower than 3G (http://bkaprt.com/rdpp/01-35/, PDF). Image from the
November 2014 Ericsson Mobility Report (http://bkaprt.com/rdpp/01-36/).

http://bkaprt.com/rdpp/01-35/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES16

I may not have gone where I intended to go, but I
think I have ended up where I needed to be.”
—DOUGLAS ADAMS, The Long Dark Tea-Time of the Soul

I’VE BEEN READING about a man named Pius “Mau” Piailug
who, in 1976, navigated a large voyaging canoe across the
Pacific, traveling more than 3,000 miles from Hawai’i to Tahiti.
Piailug sailed without the aid of maps, computer-assisted navi-
gation, or any other equipment—instead, he used the stars, sun,
and moon to guide him. In fact, the instrument most helpful
to him never made it onto his vessel: a star compass, a ring
of shells, coral, or pebbles placed around a center point (FIG
2.1). The simple-looking instrument helped young navigators
of Piailug’s tradition understand the relationship between the
horizon—the outer ring of the compass—and the canoe in the
center. This, coupled with years of training at sea, was what
helped Piailug complete his journey, and prove that traditional
navigation was still relevant in a modern world.

I think of Piailug’s journey often, and of his star compass
in particular. Because if we’ve done our job right, a website’s

NAVIGATION2
“

17NAVIGATION

navigation should act as a kind of compass: it helps new users
orient themselves within a site hierarchy, and guides them to
their destination. But with all the different tiers and types of
menus our sites contain, designing intuitive, usable navigation
can feel like a formidable task.

And those challenges compound themselves when you’re
designing responsively. How can a complex menu adapt to
a smaller screen? What if we want to display more (or less)
information depending on the dimensions of the display? Most
critically, though, a responsive navigation system doesn’t need
to look or work the same at every breakpoint, but it does need
to offer access to the same content across devices.

These questions might feel daunting, but they demonstrate
why navigation is a great example of the small layout systems
we’re going to focus on in this book. The responsive design
of a site’s navigation poses an almost entirely different chal-
lenge than a page’s top-level grid. In dealing with challenges
of layout, interaction, and visual density, we’re forced to ask
ourselves: how can we design navigation that’s as usable as it
is responsive?

Fig 2.1: Mau Piailug using a star compass
to teach navigation, as he was taught in his
youth. Photograph by Monte Costa (http://
bkaprt.com/rdpp/02-01/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES18

Thankfully, there are many great attempts at answering that
question. In this chapter, we’ll look at design patterns both
common and not-so-common, and see if we can’t find our way
through the challenges of responsively designing navigation.

THE SHOW/HIDE TOGGLE
Open up design agency Happy Cog’s responsive site (FIG 2.2).
On wider screens, the entire navigation is visible, but on smaller
viewports, where screen real estate is at a premium, the top of
the design only shows a Menu link. If you tap, click on, or select
that link with your keyboard, the full menu appears.

This is one of the most common ways of handling complex
navigation systems in a responsive design: when the menu
doesn’t fit, conceal it. This pattern requires two elements at
minimum: the navigation, which is concealed at certain break-
points; and a “trigger” element, which the user interacts with to

Fig 2.2: The responsive navigation for Happy Cog’s site seen at sizes wide and small
(http://bkaprt.com/rdpp/02-02/).

19NAVIGATION

reveal the navigation. In fact, we took the same approach with
the menu on responsivewebdesign.com (FIG 2.3). The design’s
fairly modest, but I’ll briefly walk you through the code to
demonstrate how this pattern’s often implemented..

First, at the top of the page, we have this markup:

<div class="head">
 <h1 class="logo">
 <img src="/images/logo-rwd.png"

 alt="Responsive Web Design" />
 </h1>

 <div id="nav" class="nav">
 <nav>
 <h1>Explore this

 site:</h1>

 <ul id="menu">
 Workshop
 Public Events

 Podcast
 Newsletter

 About

 </nav>
 </div><!-- /end .nav -->
</div>

<!-- [The page’s main content goes here.] -->

I’ve simplified things a little, but there’s not much more to
it: the document leads off with our logo, a link to skip to the
navigation, and then the navigation itself, marked up as an
unordered list. But that HTML is, as you might have guessed,
just the foundation. To enhance the menu further, let’s begin
with a simple JavaScript test:

http://responsivewebdesign.com

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES20

// Is this browser sufficiently modern to continue?
if (!("querySelector" in document
 && "addEventListener" in window
 && "getComputedStyle" in window)) {
 return;
}

window.document.documentElement.className +=
" enhanced";

We’re asking the user’s browser if it supports the DOM features
we’ll need elsewhere in our JavaScript—features like
document.querySelector, window.addEventListener, and
window.getComputedStyle. If they’re not found, then that return;
keeps the browser from executing the rest of our JavaScript. The
result is that older browsers are left with a perfectly usable expe-
rience, albeit a less JavaScript-enabled one (FIG 2.4). And when
those features are found, our JavaScript applies a class of enhanced

Fig 2.3: The responsive masthead for, uh, responsivewebdesign.com. Straightforward
design, with a simple toggle to show (or hide) the navigation.

21NAVIGATION

to the HTML element (window.document.documentElement.
className += " enhanced";).

Why run that test? Well, this JavaScript test lets us build our
navigation with a pinch of progressive enhancement: we can
design a simpler but usable experience that’s universally accessi-
ble by default, and then enhance the experience only for brows-
ers and devices that will actually benefit from it. If the test suc-
cessfully runs, then the enhanced class on the HTML element
tells us a given browser is receiving the “enhanced” experience.

This is a fairly common approach for responsive sites,
especially at a certain scale. For example, the BBC News team
built their responsive design upon a foundation of progressive
enhancement (FIG 2.5), using a little JavaScript test similar to
the one we’ve used above, which allows them to determine
whether a browser “cuts the mustard” (http://bkaprt.com/
rdpp/02-03/):

We make [the browser landscape] manageable in the same
[way] you and everyone else in the industry does it: by having
a lowest common denominator and developing towards that.
So we’ve taken the decision to split the entire browser market
into two, which we are currently calling “feature browsers” and
“smart browsers”. …as the [site] loads we earmark incapable

Fig 2.4: No JavaScript? No problem: our navigation’s
still accessible, even to modern browsers that can't load
our code.

http://bkaprt.com/rdpp/02-03/
http://bkaprt.com/rdpp/02-03/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES22

browsers with the above code and exclude the bulk of the
JavaScript-powered UI from them, leaving them with a clean,
concise core experience.

Instead of tracking myriad combinations of browsers and
devices, the BBC can think of their design as existing in one of
two broad experience tiers: a baseline responsive experience,
and a slightly more advanced experience that’s only served to
the browsers that can handle it.

On a much smaller scale, that’s exactly what we’re doing
with the navigation on responsivewebdesign.com. With that
enhanced class in place, we can write more advanced styles

Fig 2.5: The BBC News site is accessible—and responsive—on every internet-connected
device, but the experience is slightly enhanced on more modern browsers. Photograph
courtesy Responsive News (http://bkaprt.com/rdpp/02-04/).

http://responsivewebdesign.com

23NAVIGATION

directed at the browsers that pass our test, and build the more
advanced view of our navigation:

.enhanced .nav .skip {
 position: absolute;
 right: 0;
 top: 1.4em;
 background: #363636;
 border-radius: 50%;
 width: 2.5em;
 height: 2.5em;
}
.enhanced .nav ul {
 max-height: 0;
 overflow: hidden;
}

If a browser passes our JavaScript test, this rule will use
plain ol’ absolute positioning to take that skip link before our
navigation—.nav .skip—and stick it at the top of the page. At
the same time, by applying a pinch of background: #363636
and border-radius: 50%, we can turn that link into a big, gray,
circular button. But the second rule is where things get interest-
ing: it selects the ul inside .nav—that is, the unordered list that
contains our navigation links—and uses overflow: hidden and
max-height: 0 to turn the list into a 0px-tall box, effectively
hiding our links from view. Hiding them, that is, until a class
of .open is applied to the list:

.enhanced .nav ul.open {
 max-height: 20em;
}

With those rules, we now have two states for our navigation:
completely hidden and expanded (FIG 2.6). Sounds great and all,
but you might be wondering how we’ll get that class on our
ul. Well, that’s where a little more JavaScript comes into play:

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES24

var nav = document.querySelector(".nav ul"),
navToggle = document.querySelector(".nav .skip");

if (navToggle) {
 navToggle.addEventListener("click",

 function(e) {
 if (nav.className == "open") {
 nav.className = "";
 } else {
 nav.className = "open";
 }

 e.preventDefault();
 }, false);
}

If JavaScript’s not your thing, don’t worry—the code’s more
straightforward than it looks, I promise. Remember that skip

Fig 2.6: Our CSS now allows us to show or hide the navigation. But how do we make
it interactive?

25NAVIGATION

link inside our .nav element? Well, we’re using some JavaScript
to look for it (document.querySelector(".nav .skip"))
and, if it’s found, add some functionality whenever it’s clicked
or tapped (navToggle.addEventListener("click", …);).
When a user taps or clicks on that link, our code checks to see
i f o u r u n o r d e r e d l i s t h a s a c l a s s o f o p e n
(if (nav.className === "open") { … }). If it doesn’t, the
JavaScript adds the class to reveal the links; and if it does, it
removes the class, and hides the navigation from view.

And if we want to get a little fancy—and of course we
want to get a little fancy—we can add a CSS transition on the
max-height, allowing the list to subtly telescope in and out of
view (FIG 2.7):

.enhanced .nav ul {
 max-height: 0;
 overflow: hidden;
 transition: max-height 0.25s ease-out;
}

And we’re done! With a little bit of JavaScript, we can show
(or hide) an element of our design when it’s clicked on, all by
adding (or removing) a class.

(Quick aside: while overflow is a CSS property older than
time, it’s worth noting that an astonishingly high number of

Fig 2.7: Why not include a little max-height transition, you say? Great idea!

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES26

mobile browsers don’t implement it correctly. If any part of
your design uses overflow: auto to create scrollable areas, I
recommend Filament Group’s Overthrow.js library (http://
bkaprt.com/rdpp/02-05/), which properly detects support for
overflow while weeding out the browsers that claim to support
the property but don’t.)

While the show/hide toggle works beautifully, that doesn’t
mean the effect’s necessarily appropriate for all breakpoints.
The toggle’s really only valuable on smaller viewports, where
the layout’s a bit tighter; when the viewport gets wider, we can
display the entire navigation, locked-up with the logo (FIG 2.8).
But since the entire effect is driven by our CSS, we can override
it above a certain breakpoint with a media query:

@media screen and (min-width: 39em) {
 .page .nav ul {
 overflow: auto;
 max-height: inherit;
 }
}

Now, when the viewport reaches a minimum width of 39em,
we’ve disabled the overflow: hidden on the list, and returning
its max-height to a normal, default value. As a result, our list is
no longer hidden from view, allowing us to style it like a more
traditional masthead.

…phew!
That might seem like a lot of work, but we’re simply adding

or removing a class with a little JavaScript, and using that class
to control the visibility of our navigation. And really, that’s
the basic mechanism of nearly all show/hide toggles. MSNBC.
com’s responsive site does this very thing, in fact (FIG 2.9): on
widescreen displays, tapping or clicking on the primary catego-
ries reveals secondary menus; but on smaller displays, tapping
on an icon reveals the entire navigation, with submenus also
expandable within it.

http://bkaprt.com/rdpp/02-05/
http://bkaprt.com/rdpp/02-05/

27NAVIGATION

Fig 2.8: For wider screens, we can disable the show/hide toggle, and just keep our links
in view.

Fig 2.9: MSNBC’s responsive navigation uses a top-level toggle to reveal its menu on
smaller screens. Additionally, users can open nested menus by tapping or clicking on the
relevant sections.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES28

THE OFF-CANVAS MENU
A variant of the show/hide toggle is what’s colloquially referred
to as the off-canvas menu. While this pattern first gained trac-
tion in native mobile applications, it’s recently seen use in
responsive and mobile websites (http://bkaprt.com/rdpp/
02-06/). As it happens, Walmart.ca adopted this approach in
their recent responsive redesign (FIG 2.10). On wider screens,
the navigation’s visible at the left. But on smaller screens, tap-
ping or clicking on the Shop icon causes the entire navigation to
slide in from the left, positioned just beyond the visible canvas.

From a mechanical standpoint, this isn’t considerably differ-
ent from our old, trusty show/hide toggle: we’re still concealing
our navigation, and then asking our users to interact with an
element to toggle its visibility. If executed well, the off-canvas
menu can convey an extra layer of depth and dimensionality in

Fig 2.10: Walmart.ca’s navigation is hidden “off-canvas” on narrower viewports, but visible
by default on wider ones.

http://bkaprt.com/rdpp/ 02-06/
http://bkaprt.com/rdpp/ 02-06/
http://Walmart.ca

29NAVIGATION

your layout. It does, however, require extra care to make sure
it’s built accessibly, and that it doesn’t break the experience
for all but the latest browsers (http://bkaprt.com/rdpp/02-07/).

CONDITIONALLY LOADED MENUS
FiveThirtyEight.com, an American news and entertainment site,
launched a responsive redesign in 2014 (FIG 2.11). On smaller
displays, their team opted for a show/hide toggle for their nav-
igation. While they kept that toggle on wider viewports, links
to their main article categories—Politics, Economics, Science,
and so on—are pulled out of the hidden menu, and made visible
by default. But there’s something else at play here: on wider
screens, tapping or clicking links in the masthead reveals a
dropdown menu, teasing additional content from that section
of the site (FIG 2.12).

Here’s a high-level look at one item in FiveThirtyEight’s
navigation menu:

<ul class="menu">
 <li class="menu-item">
 Menu
 <div class="dropdown">
 <!-- Subnav content goes here -->

 </div>

<!-- Subnav content goes here -->

Each top-level link sits inside a list item (li.menu-item), which
also contains a div with a class of dropdown. And those divs
contain—you guessed it!—the dropdown menu that appears
on wider screens. That’s some straightforward markup, to be
sure—but it provides a foundation for the CSS that displays the
dropdowns on wider screens:

http://bkaprt.com/rdpp/02-07/
http://FiveThirtyEight.com

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES30

Fig 2.11: The responsive redesign for FiveThirtyEight.com. As news sites go, it’s a stately,
analysis-rich affair.

Fig 2.12: FiveThirtyEight’s responsive navigation is a simple show/hide toggle on all
displays, with key links promoted to the masthead on wider screens.

31NAVIGATION

li.menu-item {
 position: relative;
}
.dropdown {
 display: none;
 position: absolute;
}
@media screen and (min-width: 768px) {
 li.menu-item:hover .dropdown {
 display: block;
 }
}

I’m simplifying FiveThirtyEight’s styles a bit, but the
underlying mechanics are still the same: on small screens, the
.dropdown blocks are hidden by default with display: none;
but by using a media query, they can reveal the menus on wider
viewports when someone hovers over the containing list item
(li.menu-item:hover .dropdown).

The approach FiveThirtyEight’s using here is common, but
not without its drawbacks. Relying on :hover is a potential
liability, as the CSS assumes all widescreen devices are mouse-
enabled. And there are plenty of devices that buck that trend,
from tablets to touch-enabled laptops. But more broadly, there’s
a considerable drawback to using CSS to hide information on
smaller screens: namely, that the browser will still download
all the HTML for a hidden element, even if the styles hide it
from view. In other words, the small screen users of FiveThir-
tyEight.com—and of other sites that use this display: none
pattern—will be downloading extra data they won’t use. And
if your readers are on a metered data connection, that can be a
potentially costly design decision.

A more responsible alternative would be to use conditional
loading: to load that extra content only under certain condi-
tions, ensuring it’s only loaded on the screens that will use it.
When the Boston Globe’s responsive site launched, the design
team and I adopted a similar pattern for their masthead: on
smaller screens, the entire site’s navigation would be accessible
by toggling its visibility (FIG 2.13). But as the design widened

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES32

and there was more space to work with, we took advantage of
the space to promote key stories in each section.

Most important, those panels aren’t available on smaller
screens—but their markup isn’t included in the page by default,
and then hidden with CSS. Instead, the extra HTML is con-
ditionally loaded using a bit of JavaScript. Personally, I quite
like Filament Group’s Ajax-Include pattern (http://bkaprt.com/
rdpp/02-08/) for managing conditionally loaded content:

 <li data-append="/politics/latest-stories.html"

 data-media="(min-width: 39em)">
 Politics

The Ajax-Include pattern works by applying an HTML5
data- attribute to a part of your HTML, which describes
where the conditionally loaded content should be placed
(data-before, data-after, data-append, or data-replace); if
you like, you can also specify a media query (via the optional
data-media attribute) to note that the content should only

Fig 2.13: When the site first launched, the Boston Globe’s responsive navigation toggled
its visibility on smaller displays. But on wider displays, the navigation was visible—and
included teasers for key stories from each section.

http://bkaprt.com/rdpp/02-08/
http://bkaprt.com/rdpp/02-08/

33NAVIGATION

be loaded if certain conditions are met in the client. So in the
above snippet, the Ajax-Include JavaScript fetches the content of
/politics/latest-stories.html, presumably just a snippet of
HTML, and appends it to our list item—but only if the viewport
has a minimum width of 39em.

As you may have guessed, conditional loading isn’t just
handy for navigation—it can benefit other types of content as
well. The Guardian, for example, had several kinds of condi-
tionally loaded content on an earlier version of their site. When
viewed on a wider screen, certain lead stories were accompa-
nied by a row of related articles. But when you looked at the
same module on a smaller screen, only the lead stories were
visible. Now, those secondary stories weren’t hidden with a bit
of CSS. Instead of taking the performance hit of downloading
the content on every device, the site loaded the related articles
only if the user’s browser supported JavaScript and was wider
than a specified width (FIG 2.14). Otherwise, the most important
content—the lead stories—was seen by everyone.

It’s worth noting that conditional loading isn’t about provid-
ing “desktop” users with more content, or “mobile” users with
less. Rather, conditional loading can help us address problems
of density in your design, ensuring that the information shown

Fig 2.14: Certain modules on the Guardian’s site used conditional loading to reduce
information density across breakpoints.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES34

to our readers never overwhelms them. The Guardian and the
Boston Globe have identified the content that’s important to all
of their users, and used that as the basis for both the wide- and
small-screen views of each module.

In other words, it’s not about removing or hiding extra
information on smaller screens. Instead, try thinking about
your content through this three-part framework:

1.	Identify the content critical to the smaller screen.
2.	Once you’ve done that, consider that content to be the infor-

mation accessible to all your readers, regardless of how wide
(or small) their screen happens to be.

3.	If there’s additional information you’d like to include on
wider viewports, consider it an enhancement.

Adopting this “mobile first” mindset won’t necessarily
change the implementation, but it will inform the way you plan
the design of your conditionally loaded content. It’ll help avoid
the trap of thinking of smaller screens as somehow deserving
of “less” content—especially when our audiences are becoming
increasingly (if not exclusively) mobile-oriented.

HOUSTON, WE MAY HAVE A
HAMBURGER PROBLEM

As you’ve seen in this chapter so far, there’s no truly perfect way
to manage navigation. And this isn’t an exhaustive list of navi-
gation patterns: everyone from Filament Group (http://bkaprt.
com/rdpp/02-09/) to Mozilla (http://bkaprt.com/rdpp/02-10/)
has weighed in on various approaches to building responsive,
multi-device-friendly navigation systems.

But as distinct as these approaches are, many of them happen
to share one element in common (FIG 2.15). Namely, an icon
of three stacked, horizontal bars, colloquially—and perhaps
unfortunately—referred to as the “hamburger”: .

According to Quora (http://bkaprt.com/rdpp/02-11/) and the
BBC (http://bkaprt.com/rdpp/02-12/), our little hamburger icon

http://bkaprt.com/rdpp/02-09/
http://bkaprt.com/rdpp/02-09/
http://bkaprt.com/rdpp/02-10/
http://bkaprt.com/rdpp/02-11/
http://bkaprt.com/rdpp/02-12/

35NAVIGATION

was first used digitally on the Xerox Star, a little workstation
that launched in 1981 and established a number of standards
for modern personal computing: a multi-button mouse, win-
dows-based graphical interfaces, and the like (FIG 2.16).

At the time, the icon was used to open a contextually
relevant menu. But more recently, it’s been used as a trigger to
reveal a site’s entire navigation, especially at smaller resolutions.
And there are some real benefits to working with the icon: it’s
incredibly compact, and is quite legible even on smaller screens;
also, it’s very easy to include it in your designs, whether using
SVG (http://bkaprt.com/rdpp/02-13/), some fancy CSS-based
animations (http://bkaprt.com/rdpp/02-14/), or a plain ol’ HTML
entity (☰).

But as wonderful as the hamburger is, and as ubiquitous as it
seems to be, I’m here to suggest that it might have some prob-
lems. And maybe we should talk about them a bit—preferably
before we slap the icon on all of our responsive sites.

(Also, is anyone else hungry?)

LET’S BEGIN WITH the responsive website for Time magazine
(http://bkaprt.com/rdpp/02-15/). Launched in 2014, it features a
layout as flexible as its aesthetic is bold. (FIG 2.17). And while

Fig 2.15: Behold the “hamburger”: a common icon toggle for responsive
navigation systems.

http://bkaprt.com/rdpp/02-13/
http://bkaprt.com/rdpp/02-14/
http://bkaprt.com/rdpp/02-15/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES36

Fig 2.16: The hamburger’s gotten a lot more mileage lately, but was first seen on screens
in the early 1980s, as part of the Xerox Star’s graphical interface (http://bkaprt.com/
rdpp/02-11/).

Fig 2.17: The newly responsive website for Time, as flexible as it is fashionable (http://
bkaprt.com/rdpp/02-15/).

37NAVIGATION

Time’s pages are packed with content, they never overwhelm:
the design’s simple palette and clear hierarchy allows the reader
to quickly identify the stories most relevant to her, regardless
of how small—or large—her screen might be.

One aspect of the redesign I find especially impressive is the
sheer amount of navigation on each page. (I should note I’ve
never been accused of being especially “cool.”) There are, as best
as I can tell, four separate navigation elements on the homepage:

1.	On wider viewports, a menubar appears at the top of the
page, allowing the user to leap to other sites in the Time Inc.
network (FIG 2.18).

2.	The page’s footer contains a list of links to core sections of
the website (FIG 2.19).

3.	Supplemental content appears on the left edge of the page.
On the homepage, for example, you see a feed of recent sto-
ries, a stock ticker, and Time’s site search. But that’s just the
widescreen view of this part of the design. On smaller screens,
there’s a tab labeled “TAP” that allows the user to open the
content as a panel, which covers the page. When they’re
finished, they can tap or click on the tab to close it (FIG 2.20).

4.	The primary navigation is concealed until a user taps or
clicks on the hamburger icon. On smaller viewports, the
navigation covers the entire design. On wider screens, the
drawer covers the left side of the page (FIG 2.21).

Sounds like quite a lot, doesn’t it? But again, I think Time
balances the density well. Noisier navigation menus are con-
cealed when space is at a premium, and as the screen gets
progressively wider, each menu is shown by default only when
there’s sufficient space to do so. But the one navigation element
that’s always hidden on all breakpoints is, interestingly, the
site’s primary navigation. Yes, that’s right: it’s tucked behind
our beloved hamburger icon.

In fact, when the responsive TIME.com first launched, the
hamburger was treated in a fairly novel way: when the page
loaded for the first time, an overlay appeared next to the icon,
informing the reader that she could use the icon to reveal the
site’s navigation. What’s more, if her browser had a mouse, she

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES38

Fig 2.18: The menu at the top of the page is conditionally loaded on wider viewports,
treating it as a widescreen enhancement.

Fig 2.19: Behold Time’s footer. Dense, perhaps, but rich with relevant links.

39NAVIGATION

Fig 2.20: Less critical content is placed in a drawer that’s shown by default on wider
screens. But on smaller screens, it’s concealed by default until a user taps or clicks to
reveal it.

Fig 2.21: Time’s primary navigation is the real showpiece, hidden behind a hamburger icon.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES40

could also hover over the icon for a helpful tooltip informing
her she could “Click to show site navigation.” (FIG 2.22). In other
words, the icon had three separate levels of text explaining it: the
“Menu” label, the overlay, and the tooltip. While I don’t have
any insights into the redesign, this degree of explanation sug-
gests a couple of possible motives: either the site’s stakeholders
weren’t confident in the icon’s ability to clearly identify itself
as a critical navigation element, or the hamburger icon didn’t
perform well in usability tests before launch.

Once again, I’m conjecturing. But if Time did uncover usabil-
ity issues with their use of the hamburger icon, they wouldn’t
be the first to do so. Designer James Foster ran a thorough
usability study on a large site’s responsive navigation, and found

Fig 2.22: The Time hamburger, with helpful hints hovering overhead.

41NAVIGATION

that the word “Menu” consistently outperformed the icon
alone, with a 12.9% higher conversion rate (http://bkaprt.com/
rdpp/02-16/). As a result, his team abandoned the hamburger
icon, and moved to a slightly more verbose trigger for their
responsive navigation. It’s not just happening on websites,
either. The designers of Beamly’s native app discovered that
ditching hideable drawers in favor of always-visible navigation
dramatically improved user engagement and satisfaction (http://
bkaprt.com/rdpp/02-17/).

This isn’t to say that our ubiquitous little icon can’t be suc-
cessful. (Heck, it’s presumably performing quite well for Time.)
In fact, the UX team at Booking.com recently surveyed their
users and found the hamburger icon worked just fine for their
site and its audience (http://bkaprt.com/rdpp/02-18/). In fact,
changing the icon to the word “Menu” had no significant impact
on their users’ behavior.

So some sites say the hamburger’s no good for them, while
others say it’s perfectly fine—what gives? In the face of some
seemingly incompatible results, I think this demonstrates that
the hamburger icon, like all design patterns, is worth testing on
your site. When he shared his defense of the hamburger icon,
Booking.com’s Michel Ferreira said it best:

There is a lesson here for all of us on the nature of A/B testing.
You are never solely testing a UI element, pattern, or feature.
You are testing these things against a very specific user base
in a very specific scenario. What works for Booking.com may
not work for you and your users. This is the reason we A/B
test in the first place, because the findings of others…are all
unproven until they’ve been tested against our customers, on
our platform.

Beautifully said. There’s nothing inherently wrong with the
hamburger icon itself—but assuming it’s a safe default for every
responsive navigation system can be problematic. After all,
what works for one site may not work for yours. So by all
means, hamburger your sites! Just be sure to test those ham-
burgers before serving them up to your audience.

http://bkaprt.com/rdpp/02-16/
http://bkaprt.com/rdpp/02-16/
http://bkaprt.com/rdpp/02-17/
http://bkaprt.com/rdpp/02-17/
http://bkaprt.com/rdpp/02-18/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES42

THE DRAWER DILEMMA
But let’s put our icon issues aside for a moment. Because
there’s another, possibly larger problem with our ability to
conceal navigation.

Regard the responsive Disney.com, launched in 2012. And
as responsive looks go, it’s, well, lovely: replete with lavish
images, videos, and content from Disney’s various companies,
it’s an immersive, well-presented piece of responsive design,
especially for such a well-known brand (FIG 2.23). And as with
most responsive sites these days, they decided to hamburger
their navigation. On smaller and midsize breakpoints, tapping
on the hamburger reveals their site navigation which, if you’ll
count, contains every link ever created on the World Wide Web
(FIG 2.24). I saw a Geocities page I designed in 1998 somewhere
in there, three or four levels deep.

…okay, I’m trolling. (Sorry, Mickey.) But I hope it’s clear
I’m trolling out of love. Because while the layout and aesthet-
ics of Disney’s navigation are skillfully executed, their design
illustrates a larger problem with concealing navigation: that,
given the option to hide them, our menus can easily become
filled with an overwhelming (and perhaps unhelpful) number
of links. In discussing common design issues in apps for iOS,
Mike Stern, a user experience evangelist at Apple, covered a
number of the issues with hidden navigation drawers (http://
bkaprt.com/rdpp/02-19/). While most of his design critiques
are most pertinent to iOS apps, his last point is relevant to any
digital designer, whether native- or web-focused:

And finally, the downside of being able to show a lot of options
is that you can show a lot of options. Is that you will show a
lot of options. The potential for bloat and misuse is tremen-
dous… Look, drawers of any kind have a nasty tendency to fill
with junk.

I couldn’t agree more. Like many responsive sites that col-
lapse their navigation, Disney’s navigation drawer is visually
lovely, but suffers from an overabundance of content. That’s
why conditionally revealed navigation patterns work best when

http://bkaprt.com/rdpp/02-19/
http://bkaprt.com/rdpp/02-19/

43NAVIGATION

Fig 2.23: Disney.com: responsively redesigned, and gorgeously so.

Fig 2.24: Disney’s gradual reveal of their navigation, seen here avec hamburger.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES44

paired with an almost aggressive curation of the content inside
them. In fact, in his original essay on “mobile first,” Luke Wro-
blewski notes that beginning a design project with smaller
screens is a boon to products—and to their users (http://bkaprt.
com/rdpp/02-20/) (emphasis mine):

Mobile devices require software development teams to focus
on only the most important data and actions in an applica-
tion. There simply isn’t room in a 320 by 480 pixel screen for
extraneous, unnecessary elements. You have to prioritize. So
when a team designs mobile first, the end result is an experience
focused on the key tasks users want to accomplish without
the extraneous detours and general interface debris that litter
today’s desktop-accessed Web sites. That’s good user experience
and good for business.

“You have to prioritize.” That’s the key point—we should use
small screens as a lens through which we view every aspect of
our designs, including our navigation. And if we’re collapsing
or hiding something because it doesn’t “fit,” let’s instead see that
as an opportunity to stop and ask if there’s a larger issue at play:
that is, if we’re hiding or removing an element because it doesn’t
have value on smaller screens, can we simplify the design and
content of that element until it works on smaller screens? Or,
alternately, maybe it doesn’t have value for any screen?

And really, I think that’s the primary reason it feels so diffi-
cult to work with responsive navigation systems: they’re often
designed from a desktop-first mindset, and we’re left to make
them “fit” on smaller screens. But if our users are opening our
navigation drawers and finding all the junk we didn’t want to
sift through in our redesign, is that show/hide toggle really
benefiting anyone?

To be clear: I think the ability to conditionally conceal parts
of a design is incredibly useful, especially for navigation. Whisk-
ing away unnecessary information and features can reduce the
cognitive load on our users, and make our sites more approach-
able. But that useful ability is also easily misused. If we’re truly
designing mobile-first, we shouldn’t use show/hide toggles to

http://bkaprt.com/rdpp/02-20/
http://bkaprt.com/rdpp/02-20/

45NAVIGATION

sidestep the potentially difficult discussions about the real value
of our content.

After all, if our audiences are becoming predominantly
mobile, we should stop trying to make complex, widescreen-de-
signed elements play nice on smaller screens—instead, we
should consider the small-screen user’s needs first.

ALTERNATIVE PATTERNS
Of course, there’s real value in using widely-adopted design
patterns. If a symbol like the hamburger icon is familiar to your
users because they’ve used it elsewhere, it can lower the barrier
of entry, and make your navigation more intuitive to them. And
that’s not something we should devalue lightly: the familiarity
of an element can be a powerful benefit, both to our sites and
to our audiences.

However, we shouldn’t evaluate the utility of design patterns
on their ubiquity alone. Patterns are, after all, just patterns:
they’re not rules or defaults. In fact, there are some rather novel
alternative navigation patterns out there. Let’s take a look at a
few of them.

The progressive reveal

The visual state of our responsive navigation is often treated as
somewhat binary: it’s either entirely visible or completely hid-
den. But some sites are challenging that approach, and design-
ing navigation systems that make the best possible use of the
space available to them.

The BBC has been experimenting with responsive design in
public for some time now, redesigning the m-dot site for BBC
News to be completely responsive. While their responsive
design was initially accessible only to their mobile audience, it
eventually became the default experience for all their users—
whether on mobile, tablet, desktop, or anything else (http://
bkaprt.com/rdpp/02-21/; FIG 2.25).

The site has two levels of navigation: global navigation at the
top for other sites in the BBC network, and then a menu below

http://bkaprt.com/rdpp/02-21/
http://bkaprt.com/rdpp/02-21/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES46

it for BBC News-specific links (FIG 2.26). I think it’s safe to say
that neither menu is light on content, but rather than simply
concealing their navigation, they’ve adopted a progressive reveal
pattern for it. At the smallest level, each menu contains a single
element that toggles the display of additional links: the topmost
menu has a “More” link, while the BBC News navigation has a
hamburger-enabled “Sections” link.

But as both navigation menus gradually widen, things get
interesting: instead of simply moving the trigger around, each
navigation bar gradually reveals links from its hidden panel.
Anything that’s still hidden is accessible by tapping or clicking
on the “More” link or the “Sections” button—and as the design
gets wider still, more links are gradually, progressively revealed.
So while the global navigation menu might show “News”
and “Sport” links at a smaller breakpoint, a slightly wider view-
port might then promote “Weather,” “Shop,” and “Earth” as
well (FIG 2.27).

As you may have guessed, this is a JavaScript-driven solution.
When the page loads, resizes, or gets reoriented in a handheld
browser, the BBC measures the width of the browser’s viewport
and then, based on its width, shows or hides certain links in
each menu. The panels that expand when you tap or click on

Fig 2.25: Flexible, fast, and resilient: the responsive site for BBC News began as a mobile-
only site, and then became the default experience for all of their users.

47NAVIGATION

“More” or “Sections” are JavaScript-generated too, populated
with any links that happen to be hidden in the parent menu at
that breakpoint.

The Guardian uses a similar approach for their naviga-
tion. While their menu relies more on CSS than JavaScript, it
embraces some of the same principles of progressively reveal-
ing links over time. In a post on their developer blog, product
manager Chris Mulholland described the menu as a hybrid
solution: one that combines the show/hide toggle seen on most

Fig 2.26: The two levels of navigation on the BBC News site, viewed at a few
different breakpoints.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES48

responsive sites, while still keeping key elements visible at all
times (http://bkaprt.com/rdpp/02-22/):

We have prioritised the signposting at smaller screen widths,
but the side-scrolling allows you to access any sibling or top-
level section.

Fig 2.27: As with the global navigation, the BBC News-specific menu progressively
reveals links over time—while ensuring the remainder are always accessible from the
“More” dropdown.

http://bkaprt.com/rdpp/02-22/

49NAVIGATION

If side-scrolling isn't your thing, the All Sections is a familiar
‘safety-net’, giving you access across the site, starting with the
section you are in.

We have also tried to make it easier to navigate through
the subsections, for example in Culture you are always shown
the next section in the sequence. The links loop around almost
like a carousel—making it easier to click through the sections.

Rather than simply concealing the navigation entirely, the

Guardian opted to present top-level categories in a scrollable
container (FIG 2.28). As you might imagine, this scrollable area
gets quite small on narrow viewports, but still allows the user
to move through the carousel-like layout to find information
most relevant to her. But if she doesn’t find what she’s looking
for, regardless of viewport sizes, there’s an “All Sections” link,
which reveals a complex, multilevel navigation structure for
the entire site (FIG 2.29).

Generally speaking, the navigation’s structure doesn’t change
considerably as the design reshapes itself. You can view the site
on the narrowest smartphone or the widest flatscreen display,
and you’re still left with the same scrollable region, with the
expandable menu to the right. Given the other navigation pat-
terns we’ve looked at in this chapter, the Guardian’s is almost
novel in its consistency.

Becoming more responsive

Putting the technical details aside, what I especially like about
the Guardian’s navigation is the process of how they developed
it. If we return to Chris Mulholland’s overview of the navi-
gation, he credits their menu design to three factors: a close
analysis of their design goals; rapid iteration of a number of
possible solutions; and—perhaps most important—involving
their users as early as possible in the design process (http://
bkaprt.com/rdpp/02-22/):

We know that as much as we can guess and assume what our
readers want, there is nothing better than putting prototypes
in front of them as early as possible. From the Guardian web-

http://bkaprt.com/rdpp/02-22/
http://bkaprt.com/rdpp/02-22/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES50

site, we invited daily visitors to join a panel of users to help us
create the new website and provide feedback on ideas. Sending
through low-fi prototypes to that panel of users was really
valuable…[Next] we developed a prototype that would work
with content and was completely realistic…User testing gave
us some surprising results and took us down some other paths,
but in the end we had much more confidence that regular and
new users could navigate to both the most obvious, and the
most hidden sections.

Fig 2.28: The Guardian has adopted a different kind of progressive reveal for
their navigation.

Fig 2.29: On viewports small or wide, the Guardian’s navigation features a toggle to display
a complex map of the site’s structure.

51NAVIGATION

In describing his work on the design of Virgin America’s
new responsive site, Joe Stewart, partner at the design agency
Work & Co, said something similar—namely, that prototyping
didn’t just shape the design process, it was the design process.
What’s more, the client was never shown a static mockup of a
web page (http://bkaprt.com/rdpp/02-23/):

Prototyping is basically our number one tool. So our philosophy
on how to go about a project like [Virgin America] is to race
to a prototype as quickly as possible. We actually never really
made a presentation ever once, but we did constantly work
on making prototypes. So, even the very first time we got to
meet Dean and the Virgin America team, we showed them a
responsive prototype.

In recent years, there’s been considerable discussion about
whether or not we should start “designing in the browser”
by leaping right into HTML and CSS—not just to prototype
layouts, but to actually begin our creative work directly in the
browser. And there are real benefits to that: the browser is, after
all, a completely flexible canvas, and no desktop design applica-
tion currently exists that can match its inherent responsiveness.

I agree with these statements—up to a point. After all, I
think the approach has to be paired with the designer. If you’re
more comfortable thinking in HTML and CSS, great! But if
you happen to work more quickly in a traditional design appli-
cation, there’s no reason to abandon a tried and trusted app
for your nearest code editor. Instead, it’s more important to
acknowledge that each tool has strengths and weaknesses, and
whichever path gets you to a responsive design first is the one
you should take. Joe Stewart said as much during the Virgin
America interview:

I still use Photoshop just because it’s what I’m fastest in. I know
a lot of people are switching to things like Sketch, which seems
great, but for me it’s just not the fastest. My design partner,
Felipe, uses Illustrator for everything because that’s what he’s
fastest in. I think it doesn’t really matter how you get there.
If you can get something that you can put in a person’s hand

http://bkaprt.com/rdpp/02-23/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES52

and get feedback, that’s the goal. However you get there is
how you get there.

As much discussion as there is around “designing in the
browser,” we’re not talking about the end of comps as a design
tool. As the Virgin America redesign showed, applications
like Photoshop and Sketch are still invaluable for sketching,
for thinking about layout, for refining and discussing aesthet-
ics. Instead, I think we’re seeing the lessening importance of
comps as an end point: as a client-facing design document or
the definitive deliverable. Digital agencies and design teams still
use Photoshop or Illustrator mockups to discuss aesthetics or
composition options—but our industry still lacks a design tool
that reflects the instability of the networks we design for, the
various interaction modes available on our users’ devices, and
the flexibility of the web’s canvas.

Personally, I share my colleague Dan Mall’s take—we
shouldn’t necessarily be concerned with designing in the
browser, but deciding in the browser (http://bkaprt.com/rdpp/02-
24/). If you’re comfortable sketching in Illustrator or proto-
typing interactions in Keynote, you should continue to do so.
But as the Guardian’s Mulholland said, the more quickly you
can get your designs into devices and browsers that you, your
clients and stakeholders, and your users can hold and interact
with, the better:

We know that as much as we can guess and assume what our
readers want, there is nothing better than putting prototypes
in front of them as early as possible.

Truer words were never hamburgered—I mean, spoken. When-
ever possible, we should prioritize prototypes over Photoshop
documents. As valuable as comps can be—and they are valu-
able—there’s no substitute for reviewing prototypes “live” in
as many browsers and devices as possible. They’ll help you vet
your design assumptions, and verify you’re on the right path.

http://bkaprt.com/rdpp/02-24/
http://bkaprt.com/rdpp/02-24/

53NAVIGATION

Adapt the layout

Even with the best intentions, plans, and processes, our design
assumptions don’t always play out. When that happens, we
often need to revisit parts of our work—and this is especially
true of responsive navigation systems. The Guardian team
landed on their current approach after a considerable amount
of iteration. (And I’m sure they’ll continue to refine it, too.)
Email provider MailChimp found that their web app’s respon-
sive navigation, featuring a fixed toolbar, often obscured other
interface elements (http://bkaprt.com/rdpp/02-25/). Simplifying
the layout didn’t just fix those issues—it dramatically improved
the menu’s usability (FIG 2.30).

Perhaps more important, MailChimp’s work suggests an
alternative to the navigation patterns we’ve reviewed thus far:
rather than taking a complex approach, maybe we should look
for opportunities to do less. In fact, we don’t always need to

Fig 2.30: The navigation for MailChimp’s application, before and after its simplification
(http://bkaprt.com/rdpp/02-25/).

http://bkaprt.com/rdpp/02-25/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES54

hide or conceal our navigation, when simply changing its layout
can be incredibly effective.

Filament Group’s responsive site does this admirably. On the
homepage, their navigation’s never hidden. On wider screens,
it’s located at the top of the page—but on narrower viewports,
the menu’s links are stacked directly underneath the company’s
logo and tagline (FIG 2.31). Given how focused their navigation
is, this feels like a natural choice: the links can provide valuable
signposting, so they’re treated as first-class citizens.

As you’ll notice, that’s just on the homepage. On internal
pages, Filament adopted a show/hide toggle on smaller screens,
allowing them to conserve some much-needed space (FIG 2.32).
Once again, I think this is a fine choice: since the inner pages’
content should be the primary focus, moving the navigation
behind a collapsible element makes sense. More important, it
neatly demonstrates that patterns don’t have to be universally
applied throughout a site. Instead, we can be selective and

Fig 2.31: Filament Group’s navigation isn’t just attractive—it’s never hidden from view on
the homepage (http://bkaprt.com/rdpp/02-26/).

55NAVIGATION

nuanced in deciding how, where, and why we use those pat-
terns in our work.

Frank Chimero’s responsive design is one of my favorites—
because, well, look at it—but I especially love how he’s adopted
a similarly reserved approach for his navigation (FIG 2.33). No
matter how massive or microscopic your screen might be, the
navigation’s never hidden from view. What’s more, Frank spent
a considerable amount of time ensuring the navigation doesn’t
just fit; it feels at home.

Now by most menus’ standards, both of these sites’ navi-
gations are fairly lightweight—just a handful of links, really.
But that’s perhaps where they gain a bit of flexibility. A more
comprehensive set of links might need a heavier touch, and
require adopting a complex design pattern—even (gasp!) a ham-
burger! But instead, I think the lighter touch they’ve adopted
comes not out of their clever design, but out of their focused,
distilled content.

Fig 2.32: On internal pages, Filament Group uses an expandable menu link to conceal their
navigation on smaller screens, allowing the content to take center stage.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES56

That’s not to say responsive navigation systems can’t be
elegant and complex, as the BBC and the Guardian have shown.
But I suspect that with all the challenges we face on the web,
we should constantly search for opportunities to simplify our
interfaces. If our responsive navigation can do that, we’ll be in
a better position to show our users the way.

Fig 2.33: Frank Chimero’s stunning responsive site, featuring a nav that never quits—or
hides (http://bkaprt.com/rdpp/02-27/). 3

57IMAGES AND VIDEOS

So many of the films made today are photographs of people talking.”
—ALFRED HITCHCOCK (http://bkaprt.com/rdpp/03-01/)

THERE’S BEEN A CONSIDERABLE AMOUNT of writing about how
to produce images as flexible as our layouts. In fact, all it takes
is a single line of CSS:

img {
 max-width: 100%;
}

First discovered by designer Richard Rutter, this single rule says
that our images can render at whatever dimensions they want,
as long as their width never exceeds the width of their contain-
ing element. In other words, every image’s max-width is now
set to 100% of its container’s width (http://bkaprt.com/rdpp/03-
02/). If that container gets smaller than the width of the image
inside it, our industrious little img will resize proportionally,
never escaping its flexible column.

IMAGES
AND VIDEOS3

“

http://bkaprt.com/rdpp/03-01/
http://bkaprt.com/rdpp/03-02/
http://bkaprt.com/rdpp/03-02/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES58

Alongside fluid grids and media queries, fluid images are one
of the three primary ingredients of a responsive layout. And as a
result, they’re nearly ubiquitous—open any responsive site, like
the BBC News’ lovely responsive layout, and you’ll find images
that expand and contract within their containers (FIG 3.1).

For me, it’s helpful to think of max-width: 100% as only
part of the story: there are issues of performance, delivery, and
design, and we’ll cover each in this chapter. In other words,
creating fluid images is just the first step toward creating more
responsive images. But before we abandon layout entirely, it’s
worth mentioning that images aren’t the only game in town;
after all, our designs need to incorporate other kinds of media,
like video. So let’s take a moment to make our videos as flexible
as our images, and continue from there.

Fig 3.1: A lead image from an article on the BBC News website. As the article’s width
changes, the image’s max-width: 100% allows it to resize proportionally (http://bkaprt.
com/rdpp/03-03/).

59IMAGES AND VIDEOS

TOWARD FLUID VIDEOS
After the past few years of making f lexible images,
max-width: 100% might feel like a natural solution for fluid
videos. Unfortunately, it’s not quite as easy as that:

img,
object,
video {
 max-width: 100%;
}

We’ve extended our CSS slightly, including embedded
objects and videos in our flexible rule. While this works, it
doesn’t really work. If we apply this rule to every video in our
responsive layouts, the width of those videos expands and
contracts alongside our fluid grid, but the height remains fixed
(FIG 3.2). To see why, let’s take a look at the markup behind
our movie:

<video src="video-main.mp4" height="547"
width="972"></video>

Fig 3.2: Nothing’s ever easy on the web: setting our embedded videos to max-width: 100%
doesn’t quite work (http://bkaprt.com/rdpp/03-04/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES60

(A quick note: some third-party services might ask you to
use an object or iframe when embedding their video. The
following technique will work for those elements as well, but
we’ll be sticking with video for this demo.)

The markup seems pretty straightforward: the src of our
video element points to, ahem, a video file (video-main.mp4),
while the width and height attributes determine the dimen-
sions at which our movie should render. But with videos, those
last two attributes aren’t optional—because unlike images,
videos and other embedded objects don’t have intrinsic dimen-
sions, so we have to specify them in our HTML. And while we
can use max-width: 100% to override our video’s width, we
can’t do the same with height: if we used, say, height: auto,
our videos would collapse to zero pixels in height and be invis-
ible. And darn it, the internet needs its cat videos to be visible.

But luckily, there are a whole host of approaches to making
videos resize properly, many of which involve a little light
JavaScript. For example, take a look at the responsive site for
Made By Hand, a beautiful set of short films featuring rather

Fig 3.3: Made By Hand, an exquisitely responsive design for an equally moving film series
(http://bkaprt.com/rdpp/03-05/).

61IMAGES AND VIDEOS

inspirational individuals (FIG 3.3). (Responsive or not, the film
series is visually stunning and emotionally moving. I highly
recommend it.) Since the site’s responsive, you can view their
videos right in your browser, no matter how wide or small your
screen might be. To do so, the site’s designers wrote a pinch of
JavaScript to measure the video when the page first loads, and
store the dimensions for future use. After that, whenever the
page resizes itself—or the orientation of a device changes—the
video resizes proportionally, using calculations based on those
initial measurements.

Many responsive sites have adopted similar JavaScript-en-
abled tactics. Unfortunately, if you resize your browser while
using these sites, you might notice a slight visual stutter. As
the design resizes, it often takes a fraction of a second for the
video to catch up (FIG 3.4). This is partially a performance issue:
tying JavaScript to the resize event can slow down browsers,
or potentially even crash them. But it also underscores the
problem in relying on JavaScript for critical parts of our layouts.
A significant population of mobile users relies on browsers
that offer limited or no JavaScript—and on unstable cellular
networks, there’s no guarantee our JavaScript will even reach
our users.

Thankfully, building completely fluid videos is a solved
problem. What’s more, it doesn’t require a lick of JavaScript.
You see, way back in 2009, Thierry Koblentz wrote an article
demonstrating how to create videos that resize proportion-
ally in flexible layouts (http://bkaprt.com/rdpp/03-06/). And his
approach is, frankly, ingenious.

Fig 3.4: Relying on JavaScript for
proportional videos is fine, but it’s not as
smooth as a CSS-only approach—our script
causes a slight stutter as our design resizes.

http://bkaprt.com/rdpp/03-06/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES62

Let us pause, if only for a moment, to regard a video on
a website. This could be any website, but the homepage for
the Made By Hand film series is as good as any (FIG 3.5). If we
view that page at a viewport width of, say, 1024px, the video’s
dimensions are 972×547—that is, 972px wide and 547px tall.

But if we look past the pixels, we’re really trying to preserve
the relationship between two characteristics of our video—
namely, its width and its height. And as it happens, those two
measurements have a deep and fundamental connection to each
other: the aspect ratio, measured from one corner of the video to
its diagonal opposite (FIG 3.6). Luckily for us, we can calculate
that aspect ratio by using a simple formula:

height ÷ width = aspect ratio

If we plug in the dimensions of our 972×547 video, we’re left
with the following:

Fig 3.5: Behold a video, embedded in a web page. (I feel like an announcer on one of those
wildlife shows.)

63IMAGES AND VIDEOS

547 ÷ 972 = 0.562757202

By dividing the height of our video (547px) by its width (972px),
we’re left with an aspect ratio of 56.2757202%. So as the video
resizes, the height of the video should remain roughly 56% of
the video’s width.

We’ll come back to that percentage in a bit, so put it in your
back pocket for now. (Or your cargo shorts, if that’s your met-
aphorical legwear of choice. No judgment.) With the math out
of the way, let’s go back to the video element in our HTML:

<video src="video-main.mp4" height="547"
width="972"></video>

As simple as this markup is, let’s make two small adjustments
to it:

Fig 3.6: The aspect ratio of images and movies describes the relationship between the
element’s width and its height.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES64

<div class="player">
 <video src="video-main.mp4" height="168"

 width="300"></video>
</div>

Not much has changed, but we’ve sized the video down consid-
erably, setting its width and height to be small-screen-friendly
by default. (After all, there’s no need to plop a massive video
onto smaller screens, right?) More significantly, we’ve added a
little more markup: namely, there’s an element wrapped around
our video element—we’ve chosen a div with a class of player
here, but the container could be anything you want.

But once it’s combined with the aspect ratio we measured
previously, that unassuming container is the key to making
our video responsive. Let’s begin by applying some styles to
the outermost div:

.player {
 padding-top: 56.2757202%;
}

Okay, maybe not so much “styles” as “style”: with one rule,
we’ve added a padding-top equal to the aspect ratio we calcu-
lated earlier. But why, you might ask? Well, according to the CSS
specification, percentages on padding-top and padding-bottom
are relative to the width of the containing block, not the height
(http://bkaprt.com/rdpp/03-07/). As a result, that vertical padding
will always be 56.2757202% of the box’s width.

Here’s a quick example: I’ve rooted around in my browser’s
inspector, and removed the video from the Made By Hand
homepage. I also disabled the JavaScript that resized the video,
and added that padding-top to its container. And finally,
because I am a very professional web designer, I added a not-
at-all-garish background color (FIG 3.7). But as we resize the
design, the padding-top resizes as well: it’s always roughly
56% of the container’s width. In other words, our container
div might be completely empty, but it has an intrinsic aspect
ratio. No matter how wide or small that block gets, its height

http://bkaprt.com/rdpp/03-07/

65IMAGES AND VIDEOS

will always be 56.2757202% as tall as its width. The empty area
created by our padding-top is aspect ratio-aware (FIG 3.8).

Pretty darned cool, right? Well, I think it’s cool. (I might
have just figured out why I’m never invited to any parties.)
But it’s only the foundation for our flexible video. With that
percentage-based padding-top in place, we can go back to our
CSS and add a few more styles:

Fig 3.7: By applying the aspect ratio as
a percentage-based padding-top to our
container, we’ve created an empty
“ghost box.”

Fig 3.8: As we resize our padding-top-enabled box, it maintains the shape and proportion
our video needs, without a single scrap of content inside.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES66

.player {
 position: relative;
 padding-top: 56.2757202%;
}
.player video {
 position: absolute;
 left: 0;
 top: 0;
 height: 100%;
 width: 100%;
}

To begin, we’ve added position: relative to the .player
container. This creates what’s known as a positioning context:
any element absolutely positioned inside the context of that
container will now be positioned relative to .player, rather
than the viewport. And that’s what allows the second rule to
work: we’re positioning the video in the top left corner of
.player. Immediately after that, we’re setting the video’s width
and height to 100%, which ensures that they’ll be equal to the
width and height of their containing element.

If we return to our browser and reinstate the video, we can
see the final effect in action (FIG 3.9). Remember, that container
has an intrinsic aspect ratio: thanks to the percentage-based
padding-top, the height of our .player box will resize propor-
tionally, no matter how wide it becomes. With that in place,
we’ve taken our video and—with some absolute positioning—
stretched it across the entirety of our container. And the effect
is much, much smoother than if we’d relied on JavaScript.

Fig 3.9: With some proportional math and
a little extra markup, our video is now
resizing responsively—all without a single
line of JavaScript.

67IMAGES AND VIDEOS

With nothing more than a little proportional math and an extra
container, we’ve got fluid videos resizing seamlessly within a
responsive design.

WORKING WITH FLEXIBLE BACKGROUNDS
max-width: 100% is, of course, wonderful—but only for inline
images. For flexible background images, we have a num-
ber of helpful CSS properties available to us—most notably,
background-size.

Typically, when we’re applying background images to an
element, we’re asking the browser to render that image at its
native resolution. Here’s a fairly basic background rule:

.intro {
 background: url("bg-demo.jpg") no-repeat;
}

The browser will apply bg-demo.jpg to our .intro block,
and render that image at its native dimensions. And that’s the
outcome regardless of whether the image in our rule is four
thousand pixels wide or fourteen—if the image happens to be
wider or taller than the containing block, the extra pixels won’t
be displayed.

However, we can override that behavior with the
background-size property, which allows us to specify the size
we’d like our images to display at. We can specify lengths as
well, ensuring that our image displays at 250×400:

.intro {
 background: url("bg-demo.jpg") no-repeat;
 background-size: 250px 400px;
}

Alternately, if we specify one of the lengths as auto, the
image will scale proportionally to a specific width or height. For

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES68

example, a background-size of 250px auto sets our image’s
width to 250px without distorting its aspect ratio:

.intro {
 background: url("bg-demo.jpg") no-repeat;
 background-size: 250px auto;
}

We can even define our background-size in percentages,
scaling the image relative to the dimensions of its container. So
if we wanted our image’s width and height to be 50% of .intro’s
width and height, our rule would look like this:

.intro {
 background: url("bg-demo.jpg") no-repeat;
 background-size: 50% 50%;
}

As fun as background-size is, it’s worth noting that older
versions of Internet Explorer (versions 8 and lower) don’t sup-
port it. If you’re worried about fallbacks for those older brows-
ers, I might suggest a variation on Paul Irish’s conditional com-
ments technique (http://bkaprt.com/rdpp/03-08/). In fact, you
can see this in the HTML for http://responsivewebdesign.com/:

<!DOCTYPE html>
 <!--[if IE]><![endif]-->
 <!--[if lt IE 9]> <html class="oldie ie">
 <![endif]-->
 <!--[if IE 9]> <html class="ie ie9">
 <![endif]-->
 <!--[if gt IE 9]> <html class="ie"><![endif]-->
 <!--[if !IE]><!--> <html> <!—<![endif]-->

With those conditional comments in place, older versions of IE
will have a class of oldie applied to their opening <html> tag.
As a result, I can apply an acceptable fallback style by starting
a second selector with .oldie:

http://bkaprt.com/rdpp/03-08/
http://responsivewebdesign.com/

69IMAGES AND VIDEOS

.intro {
 background: url("bg-demo.jpg") no-repeat;
 background-size: 50% 50%;
}
.oldie .intro {
 background-image: url("bg-demo-noresize.jpg");
}

With our fallbacks sorted, let’s take a look at two incredibly
useful keywords we can apply to the background-size prop-
erty: cover and contain. Let’s start with cover:

.intro {
 background: url("bg-demo.jpg") no-repeat;
 background-size: cover;
}

The browser will evaluate the width and height of the back-
ground image, and find the smaller of the two values. Once
that’s done, it will scale the image proportionally, ensuring that
the smaller dimension—either the width or the height—covers

Fig 3.10: By using background-size: cover, the lead photo on Virb’s responsive
homepage proportionally resizes to, well, cover its container.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES70

its container. You can see this in action on Virb’s responsive
homepage (http://bkaprt.com/rdpp/03-09/). The lead image’s
native dimensions are 1600×600. Since the height (600 pixels)
is smaller than the width (1600 pixels), the image stretches
vertically over the height of its container (FIG 3.10). No matter
how large—or small!—that box becomes, the background scales
proportionally to perfectly cover it.

Applying background-size: contain will also scale our
backgrounds, but the resulting layout is quite different:

.intro {
 background: url("bg-demo.jpg") no-repeat;
 background-size: contain;
}

Whereas background-size: cover may occasionally hide parts
of our images from view, background-size: contain ensures
the entire background is always visible within its container
(FIG 3.11).

When combined with background-position, background-
size can create some really stunning image treatments. The

Fig 3.11: Need your background image to be completely visible and flexible? There’s a
background-size: contain for that.

http://bkaprt.com/rdpp/03-09/

71IMAGES AND VIDEOS

homepage of Vox.com combines the two properties beautifully
(FIG 3.12). Each of the blocks show featured stories and head-
lines with a flexible background image:

.content {
 background: url("beyonce_grammy.jpg") no-repeat;
 background-size: cover;
 background-position: center, center;
 height: 600px;
}

Rather than anchoring their images top and left within
each block, Vox uses background-position: center,
center to, well, center them within their containers (FIG 3.13).
And with that positioning in place, background-size: cover
ensures that each block is covered by a perfectly centered,
flexible background.

In theory, Vox could use media queries to load different
images at certain breakpoints, perhaps loading in wides-
creen-appropriate crops as the viewport expands:

Fig 3.12: Vox’s responsive homepage is a stunning combination of background images and
lovingly typeset text (http://bkaprt.com/rdpp/03-10/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES72

.content {
 background: url("beyonce_grammy.jpg") no-repeat;
 background-size: cover;
 background-position: center, center;
 height: 600px;
}
@media screen and (min-width: 39em) {
 .content {
 background-image:

 url("beyonce_grammy-medium.jpg");
 }
}
@media screen and (min-width: 60em) {
 .content {
 background-image:

 url("beyonce_grammy-wide.jpg");
 background-position: 0 0;
 }
}

The sky is, as the kids say, the limit.

SCALING RESPONSIBLY: SRCSET AND SIZES
There are some very real downsides to simply scaling or shift-
ing images with a bit of CSS. But thankfully, there are tools to
help us tackle them. Let’s step through each in turn.

First, CSS-based resizing can often be bad for the weight
of our work. As of the middle of 2015, the average weight of a
web page was 2.1MB (http://bkaprt.com/rdpp/03-11/), up from a
relatively paltry 320KB in 2010 (http://bkaprt.com/rdpp/03-12/).
And most of that weight? You guessed it: images. Our beloved
JPGs, PNGs, and GIFs comprise more than 60% of that 2.1MB
footprint—over 1.2MB per page on average.

Most of that has come about with high-density displays. In
2012, web developer Jason Grigsby found that the Apple.com
homepage jumped in size from 500KB to well over 2 MB, sim-
ply by upgrading its images to higher-resolution versions that

http://bkaprt.com/rdpp/03-11/
http://bkaprt.com/rdpp/03-12/

73IMAGES AND VIDEOS

would look crisp on high-density screens (http://bkaprt.com/
rdpp/03-13/). And Apple’s not alone—as our screens have gotten
sharper, our images have gotten bigger, bulking up our pages.

Given this ever-increasing page size, we should attend to the
amount of data we’re asking our users to download, rather than
simply squishing down massive images to fit smaller screens.
Now, to be clear: “small screen” does not imply “slow connec-
tion.” Far from it. In fact, there is no correlation between the
width of a screen and the amount of bandwidth available to it.
My laptop could be tethered to a phone’s 3G connection, on a
steady ethernet connection, or on a hotel’s barely-functioning
Wi-Fi network; conversely, my phone could just as easily be on
a fast, reliable Wi-Fi network as it could be connected to a flaky
cellular signal. Right now, there’s simply no way to detect the
amount of bandwidth actually available to our users’ devices.

To their credit, browser and hardware vendors are working
on ways for us to detect a user’s connection speed, like the

Fig 3.13: By applying background-size: cover to their centered background images,
Vox.com can feature content alongside rather evocative—and completely flexible—
background images.

http://bkaprt.com/rdpp/03-13/
http://bkaprt.com/rdpp/03-13/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES74

Network Information API (http://bkaprt.com/rdpp/03-14/), but
a standard solution hasn’t been established yet. In the short
term, I think that uncertainty is actually okay. If anything,
it emphasizes the need to reduce the amount of data we’re
serving to our users, regardless of the size of their screen. Jake
Archibald, a developer advocate for Google Chrome, suggests
that lower-end networks should be our true priority (http://
bkaprt.com/rdpp/03-15/):

It’s important to focus on 3G load times, because even though
we have 4G now, those users are on 3G (or worse) a lot of the
time: a quarter of the time in the United States, half the time
in large parts of Europe.

The commercial benefits of lighter pages are legion. GQ
(http://bkaprt.com/rdpp/03-16/) recently found that its respon-
sive redesign was entirely too slow—but by reducing page
load time by 80%, its number of unique visitors jumped by
80% (http://bkaprt.com/rdpp/03-17/). If we assume all our users
may have low bandwidth, it can help us lighten our sites and
create interfaces that are fast for everyone—whether accessed
on mobile, desktop, or something else entirely.

And that brings us back to flexible images. Those massive
images can be resized to fit on smaller devices, but even if those
tiny screens are on fast connections, they’ll be downloading a
lot of pixels they won’t use. It’s invisible overhead, and we should
reduce it whenever possible. Thankfully, some standards-based
tools are emerging to help us tackle this problem, authored by
the Responsive Issues Community Group (http://bkaprt.com/
rdpp/03-18/). They’ve worked with browser vendors to produce
a number of additions to the HTML specification, specifically
some attributes to make our images a bit more intelligent.

To begin, let’s look at our dear friend, the humble img element:

<img src="img/main.jpg" alt="A friendly-looking dog"
/>

Nothing too fancy, right? Our img element has a src that points
to the URL of an image file (img/main.jpg), accompanied by

http://bkaprt.com/rdpp/03-14/
http://bkaprt.com/rdpp/03-15/
http://bkaprt.com/rdpp/03-15/
http://bkaprt.com/rdpp/03-16/
http://bkaprt.com/rdpp/03-17/
http://bkaprt.com/rdpp/03-18/
http://bkaprt.com/rdpp/03-18/

75IMAGES AND VIDEOS

some accessible alt text to describe the contents of our image
("A friendly-looking dog"). And if we’ve done our job right,
main.jpg should show up in our browser. But here’s the thing:
that image file is going to be served to every browser and device
that accesses our page, regardless of its network speed, screen
density, or viewport size.

To help our image scale more efficiently, we’ll add one of
the new responsive image tools: namely, the srcset attribute.

<img srcset="img/main-200.jpg 2x, img/main-300.jpg
3x" src="img/main.jpg" alt="A friendly-looking
dog" />

…okay, hold on a moment. Our once-pristine img element now
looks like a Perl script threw up in the middle of our HTML.
What, pray, is all that gibberish inside our srcset attribute?
Commas? 2x? 3x? What is happening here?

Thankfully, it’s not as bad as it looks. To decipher our srcset
attribute, let’s make it more legible:

<img srcset="img/retina.jpg 2x,
 img/retinarok.jpg 3x"
 src="img/normal.jpg" alt="A friendly-looking dog"

/>

That’s a bit better. What we’ve done is create three different
versions of our image, each identical, but with different pixel
densities: their dimensions are the same, but they’re tailored
to be viewed on increasingly higher-resolution displays. And
inside our srcset, we’re simply spelling out the path to each
image, and then describing its ideal pixel density—2x, 3x, and
so on.

With those images and resolutions spelled out, our img tag
is no longer loading one image for all screens: instead, our
srcset is filled with options of multiple images that could be
loaded, depending on which is best for the user. Armed with
that information, the browser can select the image best suited
to the density of the display. That prevents us from saddling

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES76

lower-resolution screens with incredibly complex images, and
conserves some bandwidth in the process.

Neat, right? Unfortunately, those x descriptors are intended
for fixed-width images, which are so, like, 1999. But all is not
lost: we can use srcset to negotiate images based on the width
available to them in the layout. Let’s look at another img:

<img srcset="img/main-large.jpg 1440w,
img/main-medium.jpg 720w, img/main-small.jpg 360w"
src="img/main-medium.jpg" alt="A friendly-looking
dog" />

And yep, once again, that looks a little terrifying. Sorry about
that! Once you’ve climbed down from the flagpole, we can
add a few well-placed line breaks, and produce something that
looks a bit more sane:

Fig 3.14: Our three new images. Each of them is identical, except for their dimensions:
they’ve simply been scaled down.

77IMAGES AND VIDEOS

<img srcset="img/main-large.jpg 1440w,
 img/main-medium.jpg 720w,
 img/main-small.jpg 360w"
 src="img/main-small.jpg" alt="A friendly-looking
 dog" />

As before, we’ve created three different versions of our image—
but this time, they’re each identical except for their scale: they
only vary in size (FIG 3.14). Similarly, our srcset spells out
the paths to each image, separated by commas. But this time,
instead of using 2x or 3x modifiers to describe the density
of the image, we’re describing each image’s width in pixels,
followed by a w. Since main-large.jpg is 1440px wide, the
1440w allows us to tell the browser its native width. The same is
true for our 720px-wide main-medium.jpg and our 360px-wide
main-small.jpg—each is described as having widths of 720w
and 360w, respectively.

(Quick aside: sharp readers will note that in both of our
code snippets, there’s still a src on our img elements. Strictly
speaking, src is required by the responsive images specifi-
cation—your images must have src attributes, even if you’re
using srcset (http://bkaprt.com/rdpp/03-19/). This might seem
redundant, but is actually a boon for backwards compatibility.
If a browser doesn’t understand srcset, it’ll still download an
image.)

After specifying three different widths for the lead image,
you might be wondering how we decide which image the
browser loads. And that’s a perfectly reasonable thing to won-
der! But here’s the thing: we don’t. If you read the specifica-
tion, there’s nothing telling browsers how to “pick” the best
option from srcset (http://bkaprt.com/rdpp/03-20/). It’s up to
the browser to choose the best image—not us.

…okay, I know how that sounds. Maybe you’re mildly pan-
icking. Maybe you’re more-than-mildly panicking! After all,
we’re the designers! We should have the final say in which
images our users see, right?

But really: don’t worry. This lack of control is actually a
good thing. Consider that these images aren’t just chosen for
which has the best “fit” for our layout: an image from srcset

http://bkaprt.com/rdpp/03-19/
http://bkaprt.com/rdpp/03-20/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES78

could be selected to match the speed of the user’s network,
the resolution of her display—or, or, or. There are countless
factors that determine which image is the best pick. And while
some things in our responsive images toolkit allow us a higher
degree of control, determining the best resolution for our image
is best left to the browser. It’ll keep our markup lighter, and
our users happier.

While we can’t choose the best option out of srcset, we can
help the browser make a more intelligent selection. To do that,
we’ll add a sizes attribute:

<img srcset="img/main-large.jpg 1440w,
 img/main-medium.jpg 720w,
 img/main-small.jpg 360w"
 sizes="(min-width: 50em) 250px,
 (min-width: 35em) 33vw,
 100vw"
 src="img/main-medium.jpg" alt="A friendly-looking

 dog" />

So again, I realize that (min-width: 50em) 250px,
(min-width: 35em) 33vw, 100vw looks a lot like unadulter-
ated, robot-generated gobbledygook. But as with srcset, we’re
creating a list of items our browser, each separated by a comma.
Basically, each entry in our list describes the physical width of
our image at different points in our responsive design—that is
to say, the size it will occupy in the layout.

Let’s walk through our sizes attribute, and see if we can’t
decipher it:

1.	(min-width: 50em) 250px looks a little like a media query,
doesn’t it? In fact, that’s basically what it is: we’re telling the
browser that if the viewport has a minimum width of 50em,
the image will be 250px wide.

2.	(min-width: 35em) 33vw works basically the same way:
if the viewport has a minimum width of 35em, the image
will be 33vw in width. But what’s a vw, you ask? Well, a vw is
just another unit of length in CSS, equal to 1% of the view-

79IMAGES AND VIDEOS

port’s width. So 33vw is another way of saying the image will
occupy 33% of the width of the viewport.

3.	100vw is the default value for the sizes attribute. It means
the image will occupy the full width of the viewport. So if
the condition in our first sizes entry isn’t met—that is, if our
viewport is below that min-width: 40em threshold—then
our image will be sized at 100% of the viewport’s width.

The sizes listed in our, um, sizes attribute don’t need to
perfectly match the image’s size at each breakpoint. What we’re
trying to capture is an approximation of the image’s width as
the layout changes. Once it’s armed with information about
how an image will be laid out, the browser can intelligently
select an image from our srcset list and pick the best possible
option to load.

(Quick tip: if you’re a fan of valid HTML, the sizes attribute
is actually required by the specification. In other words, if you
use srcset, it should be accompanied by a corresponding
sizes. At the time of this writing, srcset will still work without
sizes, but it’ll make your markup invalid. So tread carefully.)

A note about support, before we continue:

•	 A number of non-desktop browsers offer fair support for
srcset and sizes. On both iOS and Mac OS X, Safari has
partial support for the two attributes. It supports resolu-
tion switching with the x descriptor, but not with w. Newer
default browsers for Android—including Chrome and the
default Android browser—support the attributes handily.

However, it’s not all good news: neither Android’s default
browser (as of Android 4.4.4) nor Opera Mini (as of version
8, at least) support srcset or sizes. Nor do they natively
support any other part of the responsive images specifica-
tion—and that’s unfortunate for us, as both of these browsers
are massively popular.

•	 In happier news, support for srcset and sizes is fairly
robust among most modern desktop browsers. Chrome, for
example, has supported srcset and sizes since version 38,
while Opera has supported it since version 26. At the time of
this writing, Firefox is still finalizing its implementation of

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES80

srcset and sizes, but allows you to activate the attributes
if you root around in the developer preferences. And while
Internet Explorer hasn’t shipped a working version, it is
actively working on support for the new attributes (http://
bkaprt.com/rdpp/03-21/).

Overall, the support for responsive images is impressive,
but still in its infancy—a significant number of browsers don’t
yet support srcset or sizes natively. However, you can use
a JavaScript library like Picturefill (http://bkaprt.com/rdpp/03-
22/) to patch responsive image support into older browsers.
Simply download Picturefill into your project, and include the
following in the head of your document:

<script>document.createElement("picture");</script>
<script src="/path/to/picturefill.js" async></script>

And with that, you’ll have responsive images working seam-
lessly in your flexible layouts, responsibly resizing with a little
help from srcset and sizes.

But watch your step, dear reader: while srcset and sizes
can make CSS-resized images a little more weight-conscious,
sometimes scaling an image with CSS isn’t ideal. In some cases,
flexible images can harm more than they help.

When resizing brings regret

…okay, I apologize for the dire note. There’s nothing wrong
with a little max-width: 100% to make your img elements more
flexible—and what’s more, it’ll work perfectly for most of your
images. But sometimes, simply scaling images up or down can
reduce their clarity.

Here’s a quick example: open “What is Paul Krugman Afraid
Of?” (http://bkaprt.com/rdpp/03-23/) on a reasonably large
screen, say, a laptop or a tablet. Throughout the interview,
you’ll notice several photos with text overlaid on them (FIG
3.15). Now, there are a number of potential accessibility issues

http://bkaprt.com/rdpp/03-21/
http://bkaprt.com/rdpp/03-21/
http://bkaprt.com/rdpp/03-22/
http://bkaprt.com/rdpp/03-22/
http://bkaprt.com/rdpp/03-23/

81IMAGES AND VIDEOS

in typesetting pull quotes in images—they’d need alt attributes
to be accessible to non-sighted readers—but let’s put those aside
for a moment, and focus on the responsive layout alone.

Since the article’s layout is responsive, Vox used
max-width: 100% to ensure that as their flexible grid reshapes
itself, the images never break out of their containing elements.
Because of that, opening the same article on a smaller screen
resizes the images, but the pull quotes are considerably less
legible than on wider screens (FIG 3.16).

This is equally true on complex images and charts, if not
more so. For example, take the map near the top of this page
on Columbia’s School of Engineering site (http://bkaprt.com/
rdpp/03-24/; FIG 3.17). In addition to the colored blocks rep-
resenting energy consumption across New York City neigh-
borhoods, there’s the title of the graph, a legend to help you
decipher the map, pie charts for specific land areas, and so
on. The image is, in other words, incredibly dense. So while
it could be resized, all of those finer details would be lost, and
the meaning of the image would degrade.

Fig 3.15: Vox features quite lovely visual pull quotes, with text overlaid atop images.

http://bkaprt.com/rdpp/03-24/
http://bkaprt.com/rdpp/03-24/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES82

Fig 3.16: On smaller screens, simply resizing the images makes their text hard to read.
Flexible, but frustrating.

Fig 3.17: A useful and interactive map of New York. Is there a way to effectively resize
something this dense?

83IMAGES AND VIDEOS

The form, frame, and shape of our images

The problem with CSS-based resizing is that it’s content-blind: it
focuses on the shape of the container that holds the image, not
the image itself. And sometimes, if we’re not paying attention,
those images can be resized past the point of usefulness.

This isn’t a new problem. Long before the advent of the web,
photographers and graphic designers have been concerned with
resizing their work effectively, and how to preserve the integ-
rity of their artwork across differently-sized media. In the mid-
dle of the twentieth century, the Swiss designer Karl Gerstner
applied a systematic approach to the problem, demonstrating
how a design system could be used to adapt a wordmark so that
it doesn’t just fit in different paper formats, it thrives (FIG 3.18).

More recently, designer Raymond Brigleb charted the rise
of the cassette tape’s popularity in the ’80s and the challenge
it posed for the designers of LP album covers. Constrained by
the cassette’s smaller size and unforgivingly weird aspect ratio,
designers changed the layout, size, and position of key elements
to preserve the message they wanted to convey (FIG 3.19).

Even the process of cropping a photograph relies on under-
standing the contents of the picture, not simply its dimen-
sions. A photographer identifies the primary subject of a pho-
tograph—the focal point—and trims away the inessential parts
of the picture. Various crops of a photograph may differ greatly
in the amount of detail shown, but the subject is usually con-
sistent. As different as they might look, all of the crops are, in
essence, the same photo (FIG 3.20).

In looking at the problem of making our images not just
resize, but respond, there have been some attempts to automate
intelligent image cropping. For example, Adam Bradley built a
framework that allowed designers to apply CSS classes to an
image’s container that would, in turn, preserve the focal point
as the image scaled up or down (http://bkaprt.com/rdpp/03-25/).

So it’s absolutely possible—and often ideal—to simply resize
your images with a mixture of max-width: 100%, srcset,
and sizes. But it’s worth remembering that the images inside
our documents are actually documents themselves. After all,

http://bkaprt.com/rdpp/03-25/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES84

they’re there to convey information to our readers, so we
should ensure the message survives at any scale.

FINER-GRAINED CONTROL:
PICTURE AND SOURCE

In other words, you might come across situations when images
shouldn’t be resized, but replaced—swapped for alternate files
optimized for different breakpoints, ensuring that they main-
tain clarity even as their containers expand and contract. When
that happens, you’ll want to specify a completely different
image to load.

Fig 3.18: In his book Designing Programmes, Karl Gerstner demonstrated how a well-
thought-out design system could maintain a logo’s integrity on any number of printed
formats, from full-sized advertisements to handheld gift cards (http://bkaprt.com/
rdpp/03-26/).

85IMAGES AND VIDEOS

Of course, that’s just for background images. Inline images,
such as those specified by our industrious img element, need
some extra help. And that’s where the new picture element
comes in. As it happens, Shopify’s responsive site has a great
example of picture in action. Near the top of their homepage
is a photo of a Shopify customer, which is repositioned at dif-
ferent breakpoints (FIG 3.21). But if you look under the hood,
you’ll see that it’s not one photo, but three—each sized and
cropped slightly differently from the others (FIG 3.22). And if

Fig 3.19: In reviewing how album cover
art had to adapt across LPs and cassettes,
Raymond Brigleb demonstrates the need
for responsive images (http://bkaprt.com/
rdpp/03-27/). (And suggests, I think, that
our problems on the web aren’t entirely
new.)

Fig 3.20: While the dimensions of a photograph may change from crop to crop, the focal
point remains intact. Photograph by Tim Evanson (http://bkaprt.com/rdpp/03-28/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES86

you look at the page’s source, you’ll see our first example of the
picture element:

<picture>
 <source
 srcset="homepage-person@desktop.png"
 media="(min-width: 990px)">
 <source
 srcset="homepage-person@tablet.png"
 media="(min-width: 750px)">
 <img
 srcset="homepage-person@mobile.png"
 alt="A featured Shopify Merchant">
</picture>

Fig 3.21: Follow the photo: the lead picture on Shopify’s responsive homepage is
repositioned at different breakpoints (http://bkaprt.com/rdpp/03-29/).

Fig 3.22: It might look like one image, but it’s actually three: each photo features the same
subject, but with a slightly different crop.

87IMAGES AND VIDEOS

I’ve simplified their markup slightly, but the structure’s the
same. As you can see, a picture element contains any number
of source elements, and exactly one img. On each source,
there’s a media query inside the oh-so-aptly named media attri-
bute. The browser loops through each of the source elements
until it finds one whose media query matches the conditions
in the browser. Upon finding a match, it will send that source’s
srcset to the img element and load it.

And that relationship between the source and the img is
actually quite important: the matching source is never rendered
by the browser. In fact, neither is the picture element: the
srcset of the relevant source element is sent to the innermost
img, and that’s what gets displayed. So on widescreen displays,
the source with (min-width: 990px) will send the largest ver-
sion of Shopify’s lead photo to the img; on midsize breakpoints,
homepage-person@tablet.png will get rendered, thanks to the
(min-width: 750px) query. And finally, if none of the media
queries match, the browser will just load the img.

Instead of using srcset and sizes to load bigger and smaller
versions of the same image, picture allows us to tailor our
image content to fit specific viewports. In the language of the
responsive images specification, this is referred to as art direc-
tion. Rather than simply resizing the image, we’re cropping or
otherwise optimizing it to fit a specific breakpoint. In doing so,
we’re ensuring that it still conveys its meaning, even though the
details inside the image may change.

But swapping in different crops of images isn’t all the
picture element can do. In fact, take a quick look at http://
responsivewebdesign.com/workshop. Halfway down the page,
you’ll see a list of logos (FIG 3.23). If you peek under the hood,
each of those logos look something like this:

<picture>
 <source srcset="/logos/cibc.svg"
 type="image/svg+xml" />

</picture>

http://responsivewebdesign.com/workshop
http://responsivewebdesign.com/workshop

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES88

You might have noticed our picture element is completely
lacking in media queries. Instead, there’s a single type attri-
bute on the source, indicating that the image it references is
actually a vector-based SVG file (image/svg+xml). So instead
of using media queries to select an image, our browser is actu-
ally checking our sources to see if it supports their individual
types. In this particular case, we’re looking for SVG support: if
a browser supports that image/svg+xml format, then it’ll load
the vector-based version of the image; but if it doesn’t, it’ll just
load the PNG specified in our img.

In theory, we could extend this further, enhancing our
srcset with some of those resolution-sensitive w or x flags
we discussed earlier. This type-based switching allows us to
use the picture element to ask a browser which file formats it
supports. And it gets considerably more powerful when
coupled with media queries, as you’ll see if you look at the
logo at the top of the Responsive Web Design site (http://
responsivewebdesign.com/workshop):

Fig 3.23: A little list of logos, powered by picture.

http:// responsivewebdesign.com/workshop
http:// responsivewebdesign.com/workshop

89IMAGES AND VIDEOS

<picture>
 <source
 media="(min-width: 50em)"
 type="image/svg+xml"
 srcset="/img/logo-rwd-sq.svg" />
 <source
 media="(min-width: 50em)"
 srcset="/img/logo-rwd-sq.png" />
 <source
 media="(min-width: 39em)"
 type="image/svg+xml"
 srcset="/img/logo-rwd.svg" />
 <source
 media="(min-width: 39em)"
 srcset="/img/logo-rwd.png" />
 <source
 type="image/svg+xml"
 srcset="/img/logo-rwd-sq.svg" />
 <img src="/img/logo-rwd-sq.png" alt="Responsive

 Web Design" />
</picture>

Here we’re combining media queries on each source with
a type attribute, allowing us to query not just the width of
the viewport, but whether or not the browser also supports
SVG (type="image/svg+xml"). And we’re doing so at multiple
breakpoints. At the widest ((min-width: 50em)) and smallest
ends of the masthead’s layout, we’re looking to load a two-line
version of the image, either as a SVG (logo-rwd.svg) or PNG
(l o g o - r w d . s v g) . But at the middle breakpoint
((min-width: 39em)), the wordmark’s laid out in a single line;
and once again, we’re using type-based switching to test for
SVG support.

All that extra code might look complex, but the process is
still the same: our browser is going to start at the top of our
sources, and work its way down, searching for a source whose
media query matches the viewport and whose type attribute
matches the image formats supported by the browser. Once it

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES90

finds a match, it’ll send that srcset to the img to be rendered;
if there aren’t any matches, then it’ll just load our img.

DESIGNER, FRAME THYSELF
We’ve looked at an incredibly broad array of techniques in this
chapter. But in many ways, we’re being asked to balance our
designerly need for control—using background-position and
background-size in our CSS, or picture in our markup—with
the browser’s ability to solve some of these image problems for
us with srcset and sizes. More than any coding technique,
that feels like the biggest challenge: to reframe the discussion to
focus not on a specific technology, but on relinquishing perfect
control over the experience. 4

91RESPONSIVE ADVERTIS ING

FOR ALMOST AS LONG AS we’ve printed on paper, we’ve had
advertising. Longer, even: campaign slogans and advertisements
have been discovered on the walls of Pompeii. In ancient Egypt,
papyrus was often pounded into sales messages and hung prom-
inently. But once we figured out that whole “paper” thing,
advertising really took off. The earliest printed advertisement is
a handbill for wares from tenth-century China (FIG 4.1).

I’m sure the advertisements with which you’re most familiar
are from the printed page—specifically, the display ads that
appear in magazines, newspapers, and other periodicals. But
those began modestly. Take a look at the first known adver-
tisement for coffee, which appeared in the pages of the Publick
Adviser in the seventeenth century (FIG 4.2). It was a text-only
affair, featuring an understated (and rather poetic) testimonial
for a roaster’s services. A century later, if you were to squint at
the front page of the Times of London, you might notice ads
for shipping merchants nestled among the columns (FIG 4.3).
But over time, of course, printed display ads evolved beyond
their humble beginnings to become more, well, flamboyant in
nature (FIG 4.4).

RESPONSIVE
ADVERTISING4

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES92

Fig 4.1: From stone walls to handbills, from papyrus to newsprint, advertising’s been
around for some time. (http://bkaprt.com/rdpp/04-01/; http://bkaprt.com/rdpp/04-02/;
http://bkaprt.com/rdpp/04-03/)

Fig 4.2: In its earliest days, advertising
often preferred prose to pictures, as seen
in London’s Publick Adviser (http://bkaprt.
com/rdpp/04-04/; http://bkaprt.com/
rdpp/04-05/).

Fig 4.3: Other than some visual ornaments
and slightly more adventurous typesetting,
display advertisements still feel fairly
understated a century later (http://bkaprt.
com/rdpp/04-06/).

93RESPONSIVE ADVERTIS ING

When the web came along, it’s only natural that we borrowed
the advertising practices that seemed to work for print-based
publishers. The trajectory for digital ads was, in many ways,
similar to print. From simple, modest banners to the complex
interactive ads of today, the design of digital advertising has
evolved into its own distinct practice (FIG 4.5–4.6). For good or
ill, much of our medium is supported by advertising—and this
presents a unique challenge for responsive layouts. Because
when it comes to responsive design, digital advertising is one
of the elephants in the room: after all, most ads on the web are
fixed-width.

I know, I’m as shocked as you are. But it’s true! Take, for
example, the Interactive Advertising Bureau (IAB), the consor-
tium responsible for defining most standards for online adver-
tising. If you read their guidelines for desktop (http://bkaprt.
com/rdpp/04-12/) or mobile (http://bkaprt.com/rdpp/04-13/),
you’ll see that each entry in the list—the 300×250 “medium rect-

Fig 4.4: Of course, ads got a little more … vivid over time. (http://bkaprt.com/rdpp/
04-07/; http://bkaprt.com/rdpp/04-08/; http://bkaprt.com/rdpp/04-09/; http://bkaprt.com/
rdpp/04-10/; http://bkaprt.com/rdpp/04-11/)

http://bkaprt.com/rdpp/04-12/
http://bkaprt.com/rdpp/04-12/
http://bkaprt.com/rdpp/04-13/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES94

Fig 4.5: Love them or loathe them, these early banner ads from O’Reilly and HotWired
helped kickstart the digital advertising industry—and, eventually, the rise of ad blockers.

Fig 4.6: Banners, videos, and rollovers—oh my!

95RESPONSIVE ADVERTIS ING

angle” ad, the 160×600 “skyscraper” ad, and so on—has a specific
width and height, defined in perfectly inflexible pixels (FIG 4.7).

I mention this not because I hate pixels. (Much.) But this
presents a challenge to responsive designers. Though our lay-
outs have become more flexible, responsive, and device-ag-
nostic, most standard advertisement sizes are still defined in
specific, fixed dimensions. So, how are we supposed to incor-
porate them into decidedly fluid designs?

I’ll jump to the punchline: there’s no perfect answer quite
yet. Responsive advertising is still very much a work in prog-
ress, but there are a number of emerging patterns we can use.
Let’s take a look.

(Hang on: aren’t punchlines supposed to be funny?)

CONDITIONAL LOADING
Smashing Magazine, an online publication for web designers
and developers, launched a striking new responsive site in 2012
(FIG 4.8). Featuring an airy palette alongside considered, elegant
typography, the Elliott Jay Stocks-designed site is a joy to read

Fig 4.7: You can have ads in any shape you want. (As long as you like pixels.)

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES96

on any device. If your browser is on a reasonably wide display,
you’ll see a fair number of advertisements within the fixed-
width sidebar on the right side of the screen. But if you open the
site on a smaller display—like a phone or small tablet—the ads
aren’t visible. Below a certain point, they’re completely hidden.

Here’s a quick look at the CSS that creates the effect:

.sb {
 display: none;
}
@media screen and (min-width: 63.75em) {
 .sb {
 display: block;
 }
}

The block that contains the advertisements—a div with a class
of .sb—is set to display: none by default. But above a view-
port width of 63.75em, or approximately 1020px, the sidebar’s

Fig 4.8: Smashing Magazine, sporting a stately responsive design.

97RESPONSIVE ADVERTIS ING

display property is set to block, allowing it to reappear on the
right edge of the design, ads triumphantly in view.

Seems like a reasonable approach, no? After all, below a
certain width, the ads would be incredibly difficult to integrate
into the responsive layout. But if you poke around in your
browser’s inspector, you’ll see the ads are still loaded: the code
to display and download the ads still runs (FIG 4.9). There are
simply a few lines of CSS to hide them from view.

There are a number of challenges with hiding content when
it doesn’t fit. From an advertising standpoint, this might mean
widescreen readers are subsidizing the experience for those on
smaller displays. (Assuming, of course, that hidden ads aren’t
counted as “viewed” by their advertisers.) And as we discussed
before, extra (but hidden) code can introduce needless overhead
into our designs. If a certain class of users—mobile, tablet,
desktop, or otherwise—won’t benefit from a certain piece of
content, simply hiding that information with CSS adds extra
weight to the page that won’t benefit the reader.

Beyond the ads themselves, there are other potentially
important pieces of content within that sidebar—a number of

Fig 4.9: Smashing’s ads are hidden from view, but still loaded.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES98

Fig 4.10: It’s not just ads: there are other pieces of great content hidden from
small screens.

99RESPONSIVE ADVERTIS ING

promotional blurbs for various books, a newsletter subscrip-
tion form, and so on—that are hidden from smaller screens
(FIG 4.10). These are, I hasten to add, not criticisms of Smashing
Magazine: hiding content that “doesn’t fit” is a common tech-
nique on many responsive sites. But whether we’re designing
text, video, imagery, or advertising, we should be looking for
opportunities to simplify our designs, rather than suppressing
information. A better approach would be to load only what
we need at any given viewport, rather than hiding the excess
with CSS. More specifically, we can start by identifying the ads
best suited for each breakpoint, and then load them only if the
design can accommodate them.

Back in Chapter 2, we took a brief look at responsive naviga-
tion that used conditional loading to (ahem) load more complex
menus conditionally: say, when a viewport was above a certain
width. Currently, the markup for the sidebar element—our .sb
div—is included directly in the page, and hidden with CSS:

<div class="sb">
 <!-- Code for sidebar -->
 …
</div>

In theory, we could use the Ajax-Include pattern (http://
bkaprt.com/rdpp/02-08/) to load the markup for the sidebar
conditionally, by removing the content and moving it to an
external file—say, sidebar-contents.html:

<div class="sb"
 data-append="/include/sidebar-contents.html"
 data-media="(min-width: 63.75em)"></div>

This is only a sketch, but it shows how the Ajax-Include
pattern might work. The data-append attribute points to the
URL of our snippet, which contains the content to be appended
to the div; data-media, however, says the snippet should be
loaded if our viewport is 63.75em or wider. Otherwise, if the
viewport is smaller than that threshold, the div remains empty.

http://bkaprt.com/rdpp/02-08/
http://bkaprt.com/rdpp/02-08/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES100

RETHINKING THE HIERARCHY
While redesigning their site in 2011, the Boston Globe came up
with a pattern to address their responsive advertising prob-
lem: namely, that the placement of an advertisement would
be determined by the width of the page. When the site was
a single column, ads could be inserted into sensible points in
the content flow. A large ad might appear immediately after the
lead stories on the homepage—but only on narrower screens
(FIG 4.11). As the layout widened to two columns, the ad would
move from its initial position and stick to the top of that new
column. Similarly, when a third column appeared at the widest
breakpoint, the ad would shift again (FIG 4.12–13).

I was part of the team working on the redesign, and we all felt
the Globe’s suggested pattern was a downright novel approach
to making their ads responsive. However, it did require a slight
departure from their traditional method of inserting ads into
pages. Historically, producers would insert some JavaScript in
a page’s HTML, like so:

<script>insertAd('MAIN_AD');</script>

Fig 4.11: Ads may appear underneath the lead stories on
smaller screens.

101RESPONSIVE ADVERTIS ING

It looks fairly straightforward, because it’s designed to be: the
insertAd() function is tasked with inserting an ad of some
type (specifically, MAIN_AD) at that specific point in the layout.
But that simplicity’s short-lived. Once that code is run by the
browser, it often turns into complex-looking JavaScript—spe-
cifically, a series of document.write() statements:

Fig 4.12: At a wider breakpoint, the ad’s
promoted to the second column.

Fig 4.13: As the design gets wider still, the ad moves to the third column.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES102

<script>
document.write(»

'<script src="ad-load.js"></script>');
document.write(»

'<style>.ad { border: 1px solid; … }</style>');
…
</script>

It’s a bit more complicated, but the spirit’s the same: those
document.write() statements are responsible for inserting
the MAIN_AD advertisement into the design, along with any
JavaScript and CSS files it requires. This inline approach is very
common on the web, and it definitely got points for reliability,
because you knew exactly where each ad would be placed. But
unfortunately, it doesn’t work for a more responsive solution
like the one outlined by the Globe, in which an ad could appear
in multiple potential locations.

Complicating matters is document.write() itself. First of
all, it’s terrible for performance: while the browser downloads
all the external images, styles, and assets required to render
the ad, any content on the page after those document.write()
statements is prevented from loading (FIG 4.14). The effect
on the user’s experience can be terrible, especially on low-
er-powered devices or slower networks. What’s more, once
content’s been written into the page with document.write(),
it can’t be moved around with JavaScript. If we had used this
method, our ad would have been locked into place, making
document.write()-generated content incompatible with our
responsive advertising pattern.

To make our ads responsive-friendly, our first step was to
remove all inline JavaScript. Instead, we looked at all the areas
where ads could potentially appear—underneath the lead sto-
ries, at the top of the block for the second column, and then at
the top of the third column—and inserted an empty div into
each location:

<div data-adname="MAIN_AD" class="ad-slot-a"></div>
…
<div data-adname="MAIN_AD" class="ad-slot-b"></div>

103RESPONSIVE ADVERTIS ING

…
<div data-adname="MAIN_AD" class="ad-slot-c"></div>

While each div is completely empty, it does have two
pieces of descriptive information attached to it. The first is
data-adname, an HTML5 data- attribute, which contains the
name of the ad it will eventually contain. (I am, like, a genius
at naming things.) The other snippet of metadata is a humble
class attribute, which allows us to distinguish each ad con-
tainer from its siblings.

Pretty modest markup, but this was the foundation for our
responsive advertising pattern. In the examples below, we’ll
be using a class attribute as a kind of “hook” to apply simple
styles—namely, by selectively hiding or showing each block at
different breakpoints. With that display toggle in place, we
can write some light JavaScript to not just insert the ads, but to
shuttle them from one position to the next:

Fig 4.14: document.write(): great for inserting content at a precise point in the design;
not so great at performance.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES104

1.	The script begins by looping through all divs that share a
data-adname value, and looking for the first one that’s set
to display: block.

2.	Once it’s found, our JavaScript inserts the ad into that slot.
3.	Whenever the browser window resizes or the device’s

orientation changes, the JavaScript starts the process over
again: looking for the visible block, and moving the ad into
that container.

By only showing one container at each layout breakpoint,
our JavaScript can place the ad into the appropriate container,
making our ads breakpoint-sensitive. We begin by showing
only the ad block that appears immediately after the lead sto-
ries—that is, the container with a class of ad-slot-a:

.ad-slot-a {
 display: block;
}
.ad-slot-b,
.ad-slot-c {
 display: none;
}

We’ve hidden ad-slot-b and ad-slot-c from view, so our
JavaScript loops through all of the MAIN_AD containers, and
sees that only ad-slot-a is visible. And since the div is set to
display: block, our script inserts the ad into that container,
like so:

<div data-adname="MAIN_AD" class="ad-slot-a">

 <img src="http://example.com/ad-main.gif"

 alt="" />

</div>
…

105RESPONSIVE ADVERTIS ING

<div data-adname="MAIN_AD" class="ad-slot-b"></div>
…
<div data-adname="MAIN_AD" class=“ad-slot-c"></div>

Once our viewport gets a little wider—around 30em—the sec-
ond column becomes available. At that point, we’ll update our
CSS slightly to only show ad-slot-b, the second of our three
ad containers:

@media (min-width: 30em) {
 .ad-slot-b {
 display: block;
 }
 .ad-slot-a,
 .ad-slot-c {
 display: none;
 }
}

With ad-slot-a hidden, our JavaScript runs again, and notices
that ad-slot-b is visible. As a result, our script inserts the ad
into that container:

<div data-adname="MAIN_AD" class="ad-slot-a"></div>
…
<div data-adname="MAIN_AD" class="ad-slot-b">

 <img src="http://example.com/ad-main.gif"

 alt="" />

</div>
…
<div data-adname="MAIN_AD" class="ad-slot-c"></div>

Then, at the widest breakpoint, we could hide all of our con-
tainers, except the one atop the rightmost column—ad-slot-c:

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES106

@media (min-width: 50em) {
 .ad-slot-c {
 display: block;
 }
 .ad-slot-a,
 .ad-slot-b {
 display: none;
 }
}

With these two simple rules in place, our JavaScript will—you
guessed it—move the ad into our third and final container:

<div data-adname="MAIN_AD" class="ad-slot-a"></div>
…
<div data-adname="MAIN_AD" class="ad-slot-b"></div>
…
<div data-adname="MAIN_AD" class="ad-slot-c">

 <img src="http://example.com/ad-main.gif"

 alt="" />

</div>

With our modest CSS toggle and some lightweight JavaScript,
our ad is finally getting a properly responsive treatment (FIG
4.15). It’s never resized or clipped, but it is repositioned to
maintain its visibility and make the best use of the space avail-
able. This approach isn’t limited to the Boston Globe’s respon-
sive design. In fact, this pattern evolved into Filament Group’s
AppendAround library (http://bkaprt.com/rdpp/04-15/), which
allows responsively-minded designers to shuttle any content—
not just advertisements—from one container to another.

Repositioning advertisements within a responsive design is
quickly becoming a standard for many publishers. Several of
Vox Media’s responsive sites, including Vox.com, have adopted
this pattern (FIG 4.16). Their approach, however, is slightly
different. According to Jesse Young, a member of Vox Media’s

http://bkaprt.com/rdpp/04-15/

107RESPONSIVE ADVERTIS ING

Fig 4.15: Lightweight JavaScript and CSS, combined to shuttle an ad around the page.

Fig 4.16: Vox Media rotates content responsively around the ad, not the other way around.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES108

product team, they’ve elected to move not the ads, but every-
thing else (http://bkaprt.com/rdpp/04-16/):

Ad placement is slightly trickier. We may want the banner to
appear only on the right side of the screen and nowhere else.
To ensure this, we use JavaScript for repositioning. However, it’s
worth noting that we don’t actually reposition the ad but the
content around it, instead. Because once an ad has rendered,
performing DOM manipulation directly on it creates unwanted
behaviors like creating tracking inaccuracies or causing the ad
to disappear.

Here’s the thing, though: when it comes to responsive adver-
tising, layout is the easy part. In many ways, we’ve got bigger
challenges ahead.

A NEED FOR NEW MODELS
Some time ago, designer Mark Boulton took a step back from
problems of layout, and described a number of the deeper chal-
lenges with making our advertising responsive (http://bkaprt.
com/rdpp/04-17/):

Here’s the problem as I see it:
•	 A large number of sites rely on advertising for revenue.

Many of those sites will benefit from a responsive web
design approach.

•	 Web advertising is a whole other industry.
•	 Ad units are fixed, standardised sizes.
•	 They are commissioned, sold and created on the basis of

their size and position on the page
•	 Many ads are rich (including takeovers, video, pop-overs,

flyouts and interactions)

We’ve already discussed some of the layout problems, including
that advertisements are fixed and inflexible, and aren’t usable
across various device classes and screen sizes. But Boulton gets
to the root of some deeper, business-related issues—namely, the

http://bkaprt.com/rdpp/04-16/
http://bkaprt.com/rdpp/04-17/
http://bkaprt.com/rdpp/04-17/

109RESPONSIVE ADVERTIS ING

advertising industry operates independently from the rest of the
web, and still considers the sale of digital ads in print-centric,
position-specific terms.

In a pair of essays on the topic, designer and art director
Roger Black approached the problem from another stand-
point—namely, that the business of online advertising is far
from ready for the web’s multi-device nature (http://bkaprt.
com/rdpp/04-18/, http://bkaprt.com/rdpp/04-19/):

Web, tablet and mobiles are sold and served separately, and
there are not analytics services that can yet follow a multi-plat-
form campaign. Right now the only way to get responsive
advertising is a custom sell, and custom creative…[T]here is no
single way to buy and insert adaptive ads across the platforms.
The Interactive Advertising Bureau, which has worked over the
years to promote standard sizes for ads for the desktop web,
doesn’t even list mobile ad sizes with its web ad units.

Black was writing about the problem in 2011, but the under-
lying issues haven’t changed much. Many advertising networks
still think of “mobile,” “tablet,” and “desktop” as distinct prod-
ucts to be managed and sold, making it difficult for companies
to coordinate ad campaigns across multiple device types. This
problem will only get more complicated over time, of course—
soon, “mobile,” “tablet,” and “desktop” won’t be the only catego-
ries we’re designing for. (And they shouldn’t be.) According to
research published by Google, this siloed approach desperately
needs to catch up with our multiscreen reality (http://bkaprt.
com/rdpp/04-20/). People rarely begin and end a particular
workflow on one device; instead, we might begin shopping
on our phones, before completing the checkout on our tablets
or laptops.

Like our responsive layouts, our ads need to become not just
more fluid in shape, but also in delivery. And while the adver-
tising industry has yet to modernize their layout standards or
business practices, many organizations have opted to try and
fix responsive advertising internally, by designing and develop-
ing custom-built, more flexible ad formats in-house (FIG 4.17).
According to Vox Media’s Trei Brundrett, this approach didn’t

http://bkaprt.com/rdpp/04-18/
http://bkaprt.com/rdpp/04-18/
http://bkaprt.com/rdpp/04-19/
http://bkaprt.com/rdpp/04-20/
http://bkaprt.com/rdpp/04-20/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES110

just yield more responsive-friendly ads for their websites—it
created ads that were less intrusive and more profitable (http://
bkaprt.com/rdpp/04-21/):

Our guiding principle is that advertising is part of the total
user experience…It turns out that a great user experience with
your advertising integrated with what you’re building, your
advertising performs better. It performs better for everybody.

There’s something appealing about that formula. Rather than
seeing digital advertising as somehow incompatible with an
elegant, reader-friendly design, publishers are suggesting that
flexible, responsive-friendly ads result in happier advertisers
and readers.

The digital advertising team at the Guardian describes their
cross-device advertising experiments in similar terms, saying
their new responsive ad units are “better for advertisers, better
for the Guardian and better for our readers” (http://bkaprt.com/
rdpp/04-23/). Since their site sees a massive amount of diversity
in screen sizes and device classes each month—“6000 different
types [and] counting”—the Guardian created a few flexible ver-
sions of standard ad sizes (FIG 4.18). To do so, they broke each

Fig 4.17: Many publishers, like the Boston Globe, have been bucking industry standards and
started designing flexible advertisements in-house.

http://bkaprt.com/rdpp/04-21/
http://bkaprt.com/rdpp/04-21/
http://bkaprt.com/rdpp/04-23/
http://bkaprt.com/rdpp/04-23/

111RESPONSIVE ADVERTIS ING

advertisement into its component parts, and treated them like
a small-scale responsive design:

To build this unit, we abstracted the various elements of an
advert: the background, the subject image, the branding and
the call to action. These are then populated individually into
the HTML5 ad unit to allow the unit to respond best to the
space available.

By treating their advertisements as small-scale responsive
layouts instead of fixed, inflexible blocks, publishers like the
Guardian are able to reposition these elements within a flexible,
responsive canvas.

Of course, not every site has the resources to design their
own responsive-friendly ad formats and sell them to prospec-
tive advertisers. Thankfully, Monotype has built demos of var-
ious responsive ad formats with lightweight, standards-based
technologies—each one designed for flexibility from the outset
(FIG 4.19). And Google—that scrappy little search engine—has
released a responsive unit for its AdSense advertising service,

Fig 4.18: Absent an industry standard, the Guardian created a number of responsive ad
units in-house (http://bkaprt.com/rdpp/04-22/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES112

which should help make responsive advertising more broadly
accessible (http://bkaprt.com/rdpp/04-25/).

Responsive advertising is still very much in its early days.
As of this writing, the advertising industry hasn’t made much
progress on truly cross-device advertising, focusing instead
on contractual language to improve ad visibility, and investing
heavily on designing distinct ad formats for “mobile” and “desk-
top” (http://bkaprt.com/rdpp/04-26/). And publishers are pain-
fully aware of this gap, as Peter Bale, CNN International Digital’s
vice president, noted recently (http://bkaprt.com/rdpp/04-27/):

The ad industry has not fully come down the pipe yet in terms
of responsively designed ads that will particularly work to the
same level of monetisation on any device—there is a lag there.
We have to move ahead of that and that’s very difficult.

Until that “lag” disappears, it seems it’s up to us to address
user-facing issues like performance or layout—and to come up
with our own ways of making advertising lightweight, flexible,
and responsive.

Fig 4.19: Monotype’s various responsive ad formats are wonderful proofs-of-concept
(http://bkaprt.com/rdpp/04-24/). 5

http://bkaprt.com/rdpp/04-25/
http://bkaprt.com/rdpp/04-26/
http://bkaprt.com/rdpp/04-27/

113DESIGNING THE INFINITE GRID

What works is better than what looks good.
The looks good can change, but what works, works.”
—RAY EAMES

THE PAST FEW CHAPTERS have probably felt a bit like we’ve
been sitting at a microscope. We’ve been taking close looks at
the more challenging components of a responsive design, and
discussing common principles for dealing with navigation,
images, and advertising. But no element of your design exists in
isolation. There comes a time when these small layout systems
need to be stitched together into something larger—something
flexible, responsive, and—hopefully—beautiful.

This book began with a quote by Trent Walton, one I thought
it’d be helpful to return to (http://bkaprt.com/rdpp/05-01/):

I traded the control I had in Photoshop for a new kind of con-
trol—using flexible grids, flexible images, and media queries to
build not a page, but a network of content that can be rear-
ranged at any screen size to best convey a message.

DESIGNING THE
INFINITE GRID5

“

http://bkaprt.com/rdpp/05-01/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES114

“A network of content”—such a lovely image, that. But while
we’ve been focusing on the discrete components of our respon-
sive layouts—the content—it’s important that we not lose sight
of the other half of that phrase: the larger network that con-
tains them. As responsive designers, we need to focus not just
on the individual bits of a design, but also the relationship
between those elements within a larger layout system. Joe
Stewart described the responsive redesign of Virgin America
in similar terms—not focused exclusively on individual break-
points, but with a wider, more holistic view (http://bkaprt.com/
rdpp/05-02/):

For whatever reason, people think it’s okay to have focused
user experiences being on mobile, but when you get to desktop
it’s about throwing in the kitchen sink. One of the great things
about responsive is that it forces you to make those mobile
decisions on a desktop…In terms of the overall way to think
about design and design process or responsive, some people like
to say there’s a mobile-first way of looking at things but with
responsive it’s everything first.

Tito Bottita, partner at design agency Upstatement, said that
while “mobile first” is a critically important guiding principle,
they planned the layout of the Boston Globe in a slightly different
manner (http://bkaprt.com/rdpp/05-03/):

Our designs began at 960px, arguably the most complicated
breakpoint, with several columns of content. Maybe this just
came naturally after years of designing for that width. But
I think it’s more than that. It’s easier to design with more
screen real-estate—you see more at one time, you have a more
nuanced hierarchy…So starting at 960, we designed downward.
Every decision informed the one before it and the one after; we
flipped back and forth between breakpoints a lot. As the Mobile
First mantra suggests, designing for mobile was most instruc-
tive because it forced us to decide what was most important.
And since we refused to hide content between breakpoints,

http://bkaprt.com/rdpp/05-02/
http://bkaprt.com/rdpp/05-02/
http://bkaprt.com/rdpp/05-03/

115DESIGNING THE INFINITE GRID

the mobile view could send us flying back up to the top level to
remove complexity. The process felt a bit like sculpting.

As Upstatement found, beginning from the widest, most com-
plex layout didn’t preclude them from refining the smallest
view of the design—in many instances, reviewing the work
at one breakpoint informed the shape of the other. You could
use InDesign, as Upstatement did, to quickly create break-
point-friendly designs, and balance them against each other.
Or you could dive into HTML and CSS and create a responsive
prototype. The tools are secondary, as there’s a larger question
at hand: how do we assemble all these distinct components into
a larger, useful responsive design?

On that note, we should probably talk about the F-word.

FRAMEWORKS
A number of responsive-specific CSS frameworks have appeared
in recent years. Bootstrap (http://bkaprt.com/rdpp/05-04/) and
Foundation (http://bkaprt.com/rdpp/05-05/) are two of the most
popular, allowing you to quickly create responsive layouts using
their established markup (FIG 5.1). For example, here’s how to
create a three-column row of elements with Foundation:

<div class="row">
 <div class="small-4 columns">...</div>
 <div class="small-4 columns">...</div>
 <div class="small-4 columns">...</div>
</div>

By default, Foundation’s layouts are built on a twelve-col-
umn grid. By using small-4, a class that describes the number
of columns each element should span, Foundation’s CSS will
arrange our three elements in each row (FIG 5.2–5.3). And if we
wanted to change the priority at a wider breakpoint, we simply
need to describe that change in the markup:

http://bkaprt.com/rdpp/05-04/
http://bkaprt.com/rdpp/05-05/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES116

<div class="row">
 <div class="small-12 medium-3 columns">...</div>
 <div class="small-12 medium-6 columns">...</div>
 <div class="small-12 medium-3 columns">...</div>
</div>

Above a specific breakpoint—in Foundation, that defaults to
a viewport width above 650px—our medium- classes allow
the middle div to span six columns, while the outer divs are
reduced to three columns each. And that’s all made possible by
simply changing a few classes in our HTML.

Neat, right? I think CSS frameworks, responsive or other-
wise, are fantastic. If you’re working in a team environment,
a CSS framework—whether off-the-shelf or developed inter-
nally—can take a lot of subjectivity out of creating layouts,
eliminate arbitrary class names and HTML structures, and
ensure all collaborators are using the same conventions. And
for prototyping, there’s nothing better: when I’m discussing

Fig 5.1: Third-party CSS frameworks, like Bootstrap and Foundation, can help you build a
responsive layout more quickly.

117DESIGNING THE INFINITE GRID

responsive designs with a client, I’ll often grab a third-party CSS
framework to quickly mock up a page, using disposable code
to get a layout into browsers as quickly as possible. But most
important, these third-party CSS frameworks are wonderful

Fig 5.2: A row of three elements, built from simple markup on the Foundation framework.

Fig 5.3: With a few of Foundation’s markup patterns, we’ve got a flexible, responsive
grid layout.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES118

learning resources, allowing designers to better understand the
fundamentals of page layout.

But they’re heavy.
When I say “heavy,” I’m not referring to the weight of the

code used in the frameworks, though that could be a valid con-
cern; their additional classes and markup can be, well, bulky.
And as we’ll see later in the chapter, many CSS-based methods
allow us to create robust layout systems without describing
columns and rows in our markup.

But putting the bytes aside, there’s a larger concern: CSS
frameworks are conceptually heavy. The layouts they provide
are bound to an ideal grid, usually with twelve or sixteen col-
umns of uniform widths. From there, the classes in the markup
describe how that grid should adapt at specific breakpoints. And
when it comes to Foundation and Bootstrap, the breakpoints
they use are very device-specific (FIG 5.4).

It’s worth noting that these are default values, and they’re
easy to change. But the out-of-the-box breakpoints are closely
associated with specific common devices: 768px is a common
width for 10" tablets, like the iPad, held in portrait mode; 640px
lines up with many smartphones, like the Samsung Galaxy or
HTC One, in landscape mode.

As extensible and well-engineered as these frameworks are,
their breakpoints are a snapshot of the web as we currently
understand it. With the increasing proliferation of browsers,
screen sizes, and device classes, we need lighter frameworks—

Fig 5.4: Bootstrap and Foundation, two popular responsive frameworks, define their
breakpoints in pixels, using values that are closely aligned with common device sizes.

BOOTSTRAP FOUNDATION

Small screens Below 768px Below 640px

Medium screens Above 768px Above 641px

Large screens Above 992px Above 1024px

Extra large screens Above 1200px Above 1440px

119DESIGNING THE INFINITE GRID

frameworks that can adapt as nimbly as our designs themselves,
ensuring they survive beyond just “mobile, tablet, and desktop.”

IN 2013, THE WHITNEY MUSEUM rebranded, launching an ele-
gant site (http://bkaprt.com/rdpp/05-06/) alongside its new iden-
tity (FIG 5.5). Both are cool, contemporary affairs, emphasizing
expansive margins and bold, angular lines. While the logo may
seem spare and minimal, it has a dizzying array of applications.
It can incorporate artwork from the museum, and even be
encountered on differently shaped media throughout muse-
umgoers’ days (FIG 5.6–7). On the Whitney’s semi-responsive
website, the logo changes dramatically at different breakpoints.
Yet among all these variations across countless kinds of media,
as much as it reshapes itself, the mark is still recognizable as
the Whitney’s distinctive “W” (FIG 5.8).

Fig 5.5: The Whitney’s new logo in action, which they (coincidentally!) call their
“responsive W” (http://bkaprt.com/rdpp/05-07/).

http://bkaprt.com/rdpp/05-06/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES120

Fig 5.6: As flexible as it is minimal, the Whitney’s logo can incorporate artwork from the
museum (http://bkaprt.com/rdpp/05-07/).

Fig 5.7: The logo also lives in the physical world, sketched here as it might appear on a bus
shelter (http://bkaprt.com/rdpp/05-07/).

121DESIGNING THE INFINITE GRID

Now, you’d be forgiven for thinking that across all these
hundreds, if not thousands, of variations that there was some
massive computer churning away in a closet, with pillars of
smoke pouring out as it generated algorithmically perfect vari-
ations of the logo. (Okay, the secret’s out: I’ve never actually
seen a computer.) But no! As it happens, the designers of the
logo came up with a straightforward technique for generating
a near-infinite number of adaptations (FIG 5.9):

1.	Within a specific area—a piece of paper or a section of
a web page—there will be some elements that need to
be incorporated.

2.	Divide the remaining available area into four equal columns.
3.	From there, it’s a simple matter of connecting the dots: from

the top of the first column to the bottom of the next; the
bottom of the second column to the top of the third; and so
on until the “W” is complete (FIG. 5.9).

Fig 5.8: The Whitney’s logo is just as adaptive as their website, wonderfully enough.

Fig 5.9: A simple framework can yield hundreds, if not thousands, of logo variations
(http://bkaprt.com/rdpp/05-07/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES122

This is, in every sense of the word, a framework, but it’s so
much lighter than the ones we use on the web. It’s focused less
on execution—on laying out specific elements or arranging the
columns and rows—and more on defining the characteristics
of a desirable outcome: of shaping the conditions that would
give rise to a successful mark. And with all the challenges we’re
facing—and those we’re about to face—this is a wonderful
model for the kinds of frameworks we really need on the web.

THERE’S A STORY that might be relevant here. It’s a story about
two artists, a boy who dreamed, and drawings that moved.

In the early part of the twentieth century, cartoonist Winsor
McCay was one of the most widely circulated artists in the
United States. His masterpiece, Little Nemo in Slumberland, was
massively popular, and with good reason: his broadsheet-sized
comics were awash with color and detail, featuring cinematic
layouts that have been all but lost on modern newspapers’
ever-shrinking comics pages (FIG 5.10).

Reportedly inspired by his son’s flip books, McCay decided
to try his hand at “making moving pictures.” His first attempt
required over four thousand frames, each meticulously hand-
drawn, and featured the characters of Little Nemo dancing,
fighting, and smoking the odd cigar. (FIG 5.11) Over the next
decade, McKay created ten films, showcasing his characteristic
style and draftsmanship, and translating his lovingly hatched
line art into motion. And they are, each and every one of them,
stunning (FIG 5.12).

I don’t think it diminishes any of McCay’s achievements to
suggest that his animation also feels, well, a tad rudimentary.
Viewed through modern eyes, it’s easy to see where footage is
reused or reversed, allowing McCay to conserve a little effort,
and his characters’ movements are often a bit mechanical.
That’s not a criticism—working alongside early animators like
Émile Cohl, James Stuart Blackton, and Max Fleischer, McCay
and his peers were at the forefront of defining what animation
could be.

But it wasn’t until Walt Disney formed his studio a few
decades later that people began to take animation seriously as
an art form. That might sound a bit strong, but it’s true: the

123DESIGNING THE INFINITE GRID

Fig 5.10: Winsor McKay’s Little Nemo in Slumberland is stunning, even over a century after
its publication. And thankfully, it’s freely available on the Internet Archive (http://bkaprt.
com/rdpp/05-08/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES124

characters in Disney’s features possessed an elegance of motion
that hadn’t been seen in animated movies before. Marc Davis,
one of the studio’s original animators, said that when Walt
Disney started his studio, “animation had been done before,
but stories were never told.” Now, that is some forceful trash-

Fig 5.11: For his first animated short film, Winsor McKay adapted Little Nemo for the
screen. Video image from YouTube (http://bkaprt.com/rdpp/05-09/).

Fig 5.12: McKay’s handcrafted films were part of the earliest days of line-drawn animation,
covering topics ranging from the slightly macabre (http://bkaprt.com/rdpp/05-10/), to the
patently adorable (http://bkaprt.com/rdpp/05-11/), to the sweepingly dramatic The Sinking
of the Lusitania (http://bkaprt.com/rdpp/05-12/).

125DESIGNING THE INFINITE GRID

talking, as Davis is calling out everyone who’d ever tried their
hand at animation before Disney—but I think there’s some truth
to it. To be honest, it’s pretty hard to exaggerate the effect the
studio’s work had on filmgoing audiences. Once those simple,
spare line drawings were colored and animated, they felt real.
They felt human. And that’s something that hadn’t really been
done before.

The studio’s success was due, in part, to Disney himself,
but it wasn’t because he was a more talented animator than his
employees or competitors. Rather, it was because he was an
incredibly exacting director; he demanded that the animation
his studio produced possess a “caricature of realism” or “illusion
of life” with which his audiences could connect and empathize.
Some decades later, two of Disney’s original animators, Frank
Thomas and Ollie Johnston, borrowed that phrase as the title
of their wonderful book, The Illusion of Life. In it, Thomas and
Johnston define what they called “The Twelve Basic Princi-
ples of Animation,” which allowed Disney’s animators to meet
Walt’s rather exacting demands. These principles—covering
animation concepts like staging, timing, arcs, and more—were
the bedrock for the studio’s work, and have become the foun-
dation for what we consider to be quality animation in modern
times (FIG 5.13).

On a personal note, I can’t recommend Thomas and John-
ston’s book highly enough—it’s a lovely read, especially for such
a technical book. But if you’re pressed for time, a paraphrased
version of their guidelines are available on their website (http://
bkaprt.com/rdpp/05-15/). As you read through them, you’ll
notice these principles aren’t especially technical. Rather than
using obtuse jargon, they explain how to judge whether or
not a drawing possesses that illusion of life that defined Dis-
ney’s work. Did a character’s arm properly “anticipate” that it
was about to throw a ball? Did a character’s gait have enough
“squash and stretch” as it walked from one end of the frame to
the other?

These principles were a kind of a shared vocabulary, one
that allowed the studio’s animators to discuss how their work
measured up to Disney’s famously high standards. Rather than
dictating the use of certain animation techniques or emphasiz-

http://bkaprt.com/rdpp/05-15/
http://bkaprt.com/rdpp/05-15/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES126

ing steps in their production workflow, the principles allowed
the studio to discuss and evaluate the quality of its work.

This is the conversation we need to have.
Over the past few years, we’ve been learning how to adapt

our layouts to the infinite canvas of the web. Our sites can be
viewed on any size screen, at any time, and responsive design
is one approach that lets us accommodate the web’s variable
shape. But with all of the challenges we’re facing and those
yet to come, we need to begin building not just patterns, but
principles for responsive design—principles that will allow us to
focus not just on layout, but on the quality of our work.

If each part of your responsive interface is more or less
self-contained—with its own layout rules, content needs, and
breakpoints—then the code behind each element’s design is
far less important than thinking carefully about how and why
an element should adapt. In other words, how do we move
beyond thinking in terms of columns and rows, and start talking
about the quality of our responsive designs? And what would
frameworks to support that look like?

Fig 5.13: Disney’s principles of animation were recently adapted by Cento Lodigiani into—
you guessed it—an animated primer that demonstrates them handily (http://bkaprt.com/
rdpp/05-13/). Video image from Tumblr (http://bkaprt.com/rdpp/05-14/).

127DESIGNING THE INFINITE GRID

FINDING THE WORDS
Honestly, there’s no perfect answer to that question. But
recently, a number of designers and organizations have started
sharing the vocabulary they use to decide how and when their
responsive designs should adapt. Vox Media, for example,
thinks of their content as existing within a river—and in keep-
ing with the metaphor, the flow of that content can be inter-
rupted at certain points. Here’s how they describe the front
pages of Vox.com (http://bkaprt.com/rdpp/05-16/):

Content flows around “rocks” and “breakers”, which are mod-
ules such as a “Most Commented” list or a row of “Popular Vid-
eos.” Many of these behaviors remain in the new layout system,
but the key difference is an added contextual layer. Elements in
the river are laid out to better highlight the diversity of content
on Vox — articles, features, videos, editorial apps, card stacks,
to name a few. Each one displays differently depending on its
type and neighboring entries.

Note that the language they use to talk about the quality of
their layouts doesn’t revolve around columns or rows. There’s
nary a mention of grids. For Vox, the design process begins
with content priority and evolves into a layout. By under-
standing the weight and importance of each piece of content
that flows through the river, the Vox team can algorithmically
generate a responsive layout that best reflects the importance
of the information within it.

Starting with an abstract system of columns and rows would
be wrong for them—and, I’d argue, for every web designer.
After all, according to Mark Boulton, there are three funda-
mental benefits of a grid system (http://bkaprt.com/rdpp/05-17/):

•	 Grid systems create connectedness. A well-made grid can
visually connect related pieces of content or, just as impor-
tantly, separate unrelated elements from each other. In
other words, they help us create narratives from our layout.

•	 By establishing predefined alignment points, grid systems
help designers solve layout problems.

http://bkaprt.com/rdpp/05-16/
http://bkaprt.com/rdpp/05-17/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES128

•	 A well-designed grid system will provide visual pathways
for the reader’s eye to follow, and allow them to better
understand a visual hierarchy.

As Boulton notes, we historically created grid systems by
adopting a “canvas in” method. Working from the edges of a
printed page, designers would subdivide a page into a system
of columns and rows, and place images and text upon that grid
in pleasing, rational arrangements. But the web doesn’t have
any such boundary—after all, it’s the first truly fluid design
medium. As a result, Boulton argues we should instead adopt
a “content out” approach to designing our grids: to build more
complex layout systems out from a foundation of small, mod-
ular pieces of content. And to do so, Boulton proposes three
guiding principles:

•	 Define relationships from your content. A grid for the web
should be defined by the content, not the edge of an imag-
inary page.

•	 Use ratios or relational measurements above fixed
measurements.

•	 Bind the content to the device. Use CSS media queries, and
techniques such as responsive web design, to create layouts
that respond to the viewport.

By understanding the shape of our content, we can create
flexible layouts that support connectedness—not just between
related pieces of information, but between our layouts and the
device. We can make responsive grid systems that don’t just fit
on an ever-increasing number of screens—they’ll feel at home,
wherever they’re viewed.

FINDING THE SEAMS
Principles are wonderful, of course, but we still have to find a
means of implementing them: of translating those ideals into
practical responsive patterns and layouts. For me, that “content
out” process begins by looking at the smallest version of a piece

129DESIGNING THE INFINITE GRID

of content, then expanding that element until its seams begin to
show and it starts to lose its shape. Once that happens, that’s an
opportunity to make a change—to introduce a breakpoint that
reshapes the element and preserves its integrity.

But first, we need a method of finding an element’s seams,
and understanding how it loses its shape. For me, that process
begins by looking at four characteristics: width, hierarchy,
interaction, and density.

Width

Width might be a little self-evident. As the width of a viewport
changes, so does the width of a responsive design. But as the
design gets wider or narrower, so will the elements within it,
and as those modules expand or contract, there may be oppor-
tunities to add a breakpoint (FIG 5.14).

Hierarchy

Width is, I’m sure you’ll agree, the most common characteristic
of a responsive design—but it’s not the only one. As the shape
of an element changes, the hierarchy of elements may need to
change as well.

Let’s take a quick look at a product page on Tattly’s respon-
sive ecommerce site (http://bkaprt.com/rdpp/05-19/). When
viewed on wider screens, the primary content area has two key
pieces of information: a photo carousel of the product on the
left, and a call to action to purchase the product on the right
(FIG 5.15). But that’s just one view of this particular part of the
design, because as screens get narrower, we lose the ability to
place multiple columns side by side. That’s where a question
of hierarchy arises: in a single-column layout, which piece of
content should appear first? Tattly opted, quite rightly, to lead
with photos of the product—but you may answer hierarchy
questions differently on your site (FIG 5.16).

Hierarchy is generally a reminder to be more vertically aware
in our designs. After all, we have min-width and max-width
media queries, but can also avail ourselves of min-height and
max-height queries more often. I think the navigation menu for

http://bkaprt.com/rdpp/05-19/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES130

Fig 5.14: On her stunning responsive portfolio, Meagan Fisher adjusts the typography
of certain elements—not just their layout—as their width expands and contracts
(http://bkaprt.com/rdpp/05-18/).

131DESIGNING THE INFINITE GRID

the Field Museum (http://bkaprt.com/rdpp/05-20/) beautifully
balances vertical and horizontal layouts (FIG 5.17). On wider
screens, the navigation is anchored to the left edge of the design,
and spans the full height of the viewport. You may notice that
they’re using the flexible box model, or flexbox, an advanced
CSS layout method we’ll look at later in this chapter (http://
bkaprt.com/rdpp/05-21/). But since flexbox allows elements to
automatically fill the space available to them, as the menu gets
taller or shorter, the navigation elements resize vertically—but
below a certain width or height, the menu is placed at the top
of the page.

By minding the navigation’s vertical edges, the Field Museum
was able to introduce alternate layouts to ensure the content
inside their navigation menu was never concealed, obscured,
or clipped. In other words, the breakpoints we introduce to our
responsive designs aren’t tied to the shape of a device’s screen.

Fig 5.16: On narrower viewports, the
hierarchy of product information
shifts from two columns to one.

Fig 5.15: On Tattly’s responsive
ecommerce site, the product content is
laid out in a pleasing two-column grid on
wider screens.

http://bkaprt.com/rdpp/05-20/
http://bkaprt.com/rdpp/05-21/
http://bkaprt.com/rdpp/05-21/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES132

Instead, our media queries defend the integrity of the content
we’re designing.

Interaction

The way we interact with an element may change along with
the design. Responsive navigation systems are probably the
most obvious example of this. As we saw in Chapter 2, menus
are often displayed in full at wider breakpoints but concealed at
smaller ones, perhaps hidden behind expandable icons or links
when space is at a premium (FIG 5.18).

But navigation isn’t the only kind of content that might
require interaction changes. For example, take the respon-
sive sports brackets designed by SB Nation (http://bkaprt.com/
rdpp/05-23/). While they appear as complex-looking charts at
wider breakpoints, a simpler, more linear view of the brackets
is shown on smaller screens (FIG 5.19). Along with the simplified
layout, the brackets are presented as carousels in the smaller
view, where real estate is more dear. Each of the four regions
for the bracket are a single slide in the carousel, allowing the
user to cycle through for details. The information in both visual
states is the same, but the interaction model changes.

Fig 5.17: The responsive navigation for the Field Museum, which occupies the height of
the design. Below a certain width, it moves to the top of the screen to avoid cropping.

http://bkaprt.com/rdpp/05-23/
http://bkaprt.com/rdpp/05-23/

133DESIGNING THE INFINITE GRID

Density

Finally, the amount of information you’re showing in an ele-
ment might need to vary over time—in other words, the density
of information can change. The Guardian’s feature on the 2015
Oscars is full of examples of this, with responsively designed
timelines displaying a significant amount of movie data. Above a

Fig 5.18: Karen McGrane’s company site has a traditional-looking navigation at wider
breakpoints, but on smaller viewports the user toggles the visibility of the menu. Same
links, but a new interaction model (http://bkaprt.com/rdpp/05-22/).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES134

certain width, thumbnail images are loaded in, slightly increas-
ing the visual (and informational) density of the timeline
(FIG 5.20).

Density is, as you might have guessed, an area where you
should tread very carefully. As we’ve discussed before, remov-

Fig 5.19: I don’t know from sports, but I know I like SB Nation’s responsive brackets:
complex charts on wide screens, but a carousel of match-ups on smaller viewports. Same
information, different interaction.

Fig 5.20: The Guardian’s responsive cinematic timelines gradually increase in density,
displaying an extra image above a certain width (http://bkaprt.com/rdpp/05-24/).

135DESIGNING THE INFINITE GRID

ing or hiding information because it doesn’t fit can be prob-
lematic (FIG 5.21). Personally, I think the Guardian’s timelines
work so well because the images shown at wider breakpoints
are enhancements: they’re not critical to understanding the
information around them. Could they have designed alternate
versions of the timelines to show images at all breakpoints?
Possibly. But I think this is a wonderful example of density used
to lighten the visual impact of a design, removing extraneous
information without impeding access to the content.

SHAPING OUR SEAMS:
MOVING BEYOND CLASSES

Width, hierarchy, interaction, and density work incredibly
well for identifying the outer limits of our tiny layout systems,
but you may want to supplement them with other concepts.
Recently, designer Nathan Ford suggested a number of useful
patterns for identifying when relationships between elements
begin to break down, including layout anti-patterns like sevens,

Fig 5.21: Tattly hides its submenu entirely,
reducing its navigation to a list of primary
sections on smaller screens.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES136

drifts, and pinches (FIG 5.22). But regardless of how you choose
to find the seams in your layout, moving beyond simple markup
classes will give you considerably more flexibility.

Editorially, a (sadly defunct) web service for writers and
editors I cofounded, used a custom layout framework for the

Fig 5.22: Sevens, drifts, and pinches—oh my! Nathan Ford suggests a number of useful
areas where your design might degrade (http://bkaprt.com/rdpp/05-25/).

Fig 5.23: Editorially’s responsive dashboard used a custom, lightweight framework to
create content-driven breakpoints.

137DESIGNING THE INFINITE GRID

most complex parts of its interface. The most visible example
of this was on Editorially’s dashboard, which displayed a list
of documents owned by and shared with the user (FIG 5.23).
As part of the team that built the dashboard, I started with a
small-screen-friendly layout: a series of tasks and content, laid
out vertically in a single-column, hierarchical grid (FIG 5.24).

Using a “mobile-friendly” layout as your foundation is a sign
of a responsibly made responsive layout—but we don’t have
to stop at one column. For example, as Editorially’s dashboard
reached a width of 31em, it shifted to a two-column layout, using
some concise CSS (FIG 5.25):

Fig 5.24: The foundation for Editorially’s
layout? A single-column grid.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES138

@media screen and (min-width: 31em) {
 /* Set widths */
 .doc-cell {
 float: left;
 width: 47.602739726027397260%;

 /* 278px / 584px */
 }
 /* Build the new layout */
 .doc-cell:nth-child(2n) {
 margin-right: 0;
 }
 .doc-cell:nth-child(2n+1) {
 clear: left;
 }
}

Wait—what just happened? Three selectors, and we
have a new grid layout? Yep, and it’s all thanks to the
:nth-child() pseudo-class. Instead of relying on a CSS frame-
work that requires classes in our HTML to describe our layout,

Fig 5.25: With a little :nth-child() magic, we can quickly create a two-column layout.

139DESIGNING THE INFINITE GRID

:nth-child() provides us with an incredibly powerful way to
address specific elements of our design based on where they fall
within the structure of our document. For example, if I wrote
.doc-cell:nth-child(4), my CSS would select the .doc-cell
element that was the fourth child of its parent:

<div class="doc-grid">
 <div class="doc-cell">…</div>
 <div class="doc-cell">…</div>
 <div class="doc-cell">…</div>
 <div class="doc-cell">…</div>
 <div class="doc-cell">…</div>
</div>

Similarly, if I wrote .doc-cell:nth-child(2), my rule
would select the .doc-cell element that’s the second child of
our grid:

<div class="doc-grid">
 <div class="doc-cell">…</div>
 <div class="doc-cell">…</div>
 <div class="doc-cell">…</div>
 <div class="doc-cell">…</div>
 <div class="doc-cell">…</div>
</div>

Seems fairly straightforward, right? Well, things get really
interesting when n appears inside :nth-child(). When that
happens, n acts as a counter: its value begins at zero, then incre-
ments by one each time. So :nth-child(2n) becomes simple
multiplication: just multiply the value of n by the number next
to it, then add one to n, and then repeat the process.

2 × 0 = 0
2 × 1 = 2
2 × 2 = 4
2 × 3 = 6
…

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES140

In our CSS above, .doc-cell:nth-child(2n) is a way
to instantly select every even-numbered cell in our grid,
regardless of whether there are twenty cells in the grid, or
twenty thousand. Once we’ve made that selection, applying a
margin-right: 0; ensures that every second cell of our two-col-
umn grid is aligned flush against the right edge of the design.

.doc-cell:nth-child(2n+1), on the other hand, selects
every second cell—but the +1 in the selector says we should
start from one, not zero. Here’s how the math would look:

(2 × 0) + 1 = 1
(2 × 1) + 1 = 3
(2 × 2) + 1 = 5
(2 × 3) + 1 = 7
…

Therefore, .doc-cell:nth-child(2n+1) applies a
clear: left to every odd-numbered cell, ensuring that each
row is a nice, discrete grouping of two documents (FIG 5.25).

Since we’re using :nth-child(), rather than specific classes
that exist in our markup, we can quickly—and dramatically—
revise the grid’s layout at each breakpoint. For example, as
the dashboard viewport gets a little wider, we can introduce a
three-column layout at a breakpoint of 44em (FIG 5.26):

/* 3-column */
@media screen and (min-width: 44em) {
 /* Set new widths */
 .doc-cell,
 .doc-cell:nth-child(n) {
 margin-right: 3.043968432919954904%; /* 27 /

887 (per comp) */
 width: 31.003382187147688838%;

 /* 278px / 887px (per comp) */
 }
 /* Reset clears from previous breakpoint */
 .doc-cell:nth-child(n) {
 clear: none;
 }

141DESIGNING THE INFINITE GRID

 /* Build the new layout */
 .doc-cell:nth-child(3n) {
 margin-right: 0;
 }
 .doc-cell:nth-child(3n+1) {
 clear: left;
 }
}

While this media query looks a little complex, it’s simply
repeating the process from our two-column layout:

1.	New, flexible widths and margins are assigned to the
doc-cell elements in our grid.

2.	We can use :nth-child(n) to quickly reset styles inherited
from the previous breakpoint. (In this case, we’re removing
the clear: left; applied to the start of each row.)

3.	Then, we use :nth-child(3n) to remove the right margin
of every third cell of our dashboard.

Fig 5.26: Another breakpoint, another grid layout: this time, three columns with
:nth-child(3n).

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES142

4.	Finally, :nth-child(3n+1) instructs the first cell in every
three-column row to clear the cells before it.

I think you can see where this is going. Over time, Edi-
torially’s dashboard evolved from a single-column grid into
two- and three-column variants, continuing all the way up to
a final six-column layout (FIG 5.27). Realistically, we were only
constrained by the time and resources we poured into the
design. By moving the layout logic out of markup and into CSS,
we gained infinitely more flexibility (FIG 5.28).

Thankfully, it’s not just :nth-child(). There are a truckload
of equally nimble layout tools coming out of the CSS specifica-
tion. Flexbox, which places elements in horizontal or vertical

Fig 5.27: Sky’s the limit: lightweight markup and powerful CSS can bring our responsive
grids from four columns, to five, and finally up to a six-column layout. (And theoretically,
beyond.)

143DESIGNING THE INFINITE GRID

stacks, is one of the most popular. The masthead on Frank
Chimero’s blog is a wonderful example of this. By setting
display: flex on the header, the two elements within it—the
navigation and his logo—are immediately laid out horizontally,
each becoming a column occupying the full width that row
(FIG 5.29).

Hypothetically, if Chimero were so inclined, he
could reverse the order of the two elements by adding
flex-direction: row-reverse to the masthead—all without
touching the markup (FIG 5.30). This acts a bit like a change in
gravity: while they’re still laid out in a row, the order of the two
items instantly reverses.

These more lightweight layout models have become incred-
ibly popular, and have been embraced by a number of respon-
sive designs (FIG 5.31). But as flexible as they are, flexbox
and :nth-child() aren’t without their drawbacks. As Jake
Archibald notes, flexbox is ideal for small-scale layouts, but
can negatively affect page rendering if used for page-level grids
(http://bkaprt.com/rdpp/05-30/). Additionally, some of these
properties won’t work in older browsers—:nth-child() isn’t
supported by Internet Explorer 8 or below, and display: flex
won’t work at all in IE9 or lower. (And confusingly, there are
differing implementations of flexbox in IE10, Safari, and many
versions of Android.)

But if we take these considerations to heart, and if we design
appropriate fallbacks for the browsers that need them, these
lightweight layout tools allow us to design grid systems that

Fig 5.28: Index pages on our site for the Responsive Design Podcast use a similar
:nth-child()-based layout framework (http://bkaprt.com/rdpp/05-26/).

http://bkaprt.com/rdpp/05-30/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES144

are effectively infinite in scale. As we move away from device-
specific breakpoints, and adapt our layout systems according to
the location of their seams, we’ll be creating more robust, more
future-friendly layouts. In other words, we’ll be better prepared
for the devices and browsers we haven’t even imagined yet.

Fig 5.29: Frank Chimero’s lovely responsive site features a little flexbox in its layout
(http://bkaprt.com/rdpp/02-27/).

Fig 5.30: By changing the flex-direction on a flexible box, you can quickly reverse the,
um, direction of the elements within it.

145DESIGNING THE INFINITE GRID

THE SEAMS WITHIN
And really, that’s the sticking point, isn’t it? We’ve moved far
beyond the desktop, but we’re still trying to find the right words
to encompass the scope of what we’re designing and where it’ll
appear. Despite that shift, the three words I hear most often
on a responsive project—“mobile,” “tablet,” and “desktop”—
are also the least helpful. They’re not bad as such, but they’re
shorthand and often obscure the design challenges we face.

As a quick example, ask a colleague to describe what “mobile”
means to them. Depending on who you ask, the term might
suggest a small, touchscreen-enabled device, one that uses a
slower cellular network to browse the web. But what if the
user’s device is connected to Wi-Fi? Alternately, “desktop”
might suggest a widescreen device, perhaps with a mouse or
trackpad. But what if their laptop’s tethered to their phone’s 3G
connection? What if it also has a touch interface?

In other words, it’s not just that we’re designing for more
device classes than ever before. Rather, the lines between
“mobile,” “tablet,” and “desktop” are blurring: there are phones
approaching the size of some smaller tablets (and vice versa);
our sites can appear on web-enabled smartwatches, with view-

Fig 5.31: Google Chrome’s platform reference (http://bkaprt.com/rdpp/05-27/), the
ConvergeSE conference (http://bkaprt.com/rdpp/05-28/), and the Guardian (http://bkaprt.
com/rdpp/05-29/): all fine examples of flexbox lovingly applied to multi-device layouts.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES146

Fig 5.32: Responsive on your wrist: GOV.UK’s lovely responsive site, as rendered on a
Moto 360 smartwatch. Screenshots courtesy Anna Debenham.

Fig 5.33: Don’t Digg and drive, kids: Tesla’s Model S electric car has a touchscreen that,
yes, has a WebKit-based browser. Photograph by Chris Martin (http://bkaprt.com/
rdpp/05-31/).

147DESIGNING THE INFINITE GRID

ports roughly the same size as many smartphones (FIG. 5.32);
heck, there are cars available today with browsers embedded
in their dashboards (FIG. 5.33).

These are just a few reasons why I find it helpful to talk
about features, not device classes. For example, I’ll often talk
with clients about how a responsive design performs across a
few broad categories, usually focusing on input method, screen
size, network speed, and network condition (FIG. 5.34).

It’s not a comprehensive list, of course: an animation-heavy
project might need a row for the quality of various devices’
graphics processors, or perhaps you’ll want finer-grained
options in the network rows. And my row of input methods
is often too brief, almost to a fault—perhaps you’re designing
for gestural interfaces, directional pad-driven devices like TV
remotes or console controllers, or stylus-enabled screens.

But a table like this helps me decouple discussions of layout
and screen size from, say, the quality of the user’s network, or
the input method she uses to interact with her device. Doing so
helps avoid situations where it’s assumed that every widescreen
device is mouse-enabled, or that every small device is limited
to a spotty 3G connection.

Fig 5.34: Rather than discussing broad device classes, it’s helpful to focus on specific
features and conditions that might affect your responsive design.

INPUT
METHOD

Touch Keyboard/
Mouse

Hybrid Speech Joystick/
Analog

SCREEN
SIZE

Small Mid-Range Wide

NETWORK
SPEED

Slow
(EDGE/
GPRS)

Medium
(3G)

Fast

NETWORK
CONDITION

Primarily
Offline

Spotty,
high
latency

Reliable,
stable

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES148

Much of this book has been about breaking down the page
into its component parts: understanding how our small layout
systems need to adapt, and then using those modules to grad-
ually build more complex, responsive layout systems. As our
layouts become more flexible and device-agnostic, the words
we use to talk about our responsive designs should follow suit.
Because when we’re accounting for the conditions under which
our responsive designs might be viewed—the myriad network
conditions, input modes, and screen sizes—we need a design
language that’s as nimble and modular as our layout systems
are becoming.

After all, these challenges aren’t new. In a sense, we’ve been
walking through this forest for some time, and we’ve got quite
some distance to go yet. But as we walk, it’s worth remembering
there will always be trees around us, and we’ll still manage to
build beautiful, nimble, responsive designs.

Let’s get started.

149RESOURCES

RESOURCES

Responsive Pattern Libraries

If you’d like to learn more about organizations using pattern
libraries in their responsive designs, the Responsive Web
Design Podcast I co-host with Karen McGrane has a num-
ber of episodes that might interest you. The interviews with
Marriott (http://bkaprt.com/rdpp/06-01/), Code for America
(http://bkaprt.com/rdpp/06-02/), Capital One (http://bkaprt.com/
rdpp/06-03/; http://bkaprt.com/rdpp/01-16/), Virgin America
(http://bkaprt.com/rdpp/02-23/), and Ushahidi (http://bkaprt.
com/rdpp/06-04/) are especially relevant.

If you’re interested in the process of building a style guide
or pattern library, Susan Robertson’s “Creating Style Guides”
(http://bkaprt.com/rdpp/06-05/) is a great primer. Additionally,
Anna Debenham’s book, Front-end Style Guides, is as well-writ-
ten as it is brief, and provides a wonderful introduction to the
hows and whys of creating a pattern library (http://bkaprt.com/
rdpp/06-06/).

While we’re speaking of All Things Debenham: alongside
Brad Frost, Anna co-hosted the Style Guide Podcast, which
looks at the technical, visual, and organizational challenges of
designing and maintaining pattern libraries (http://bkaprt.com/
rdpp/06-07/).

Responsive Images

Mat Marquis wrote the original article that kicked off the
responsive images discussion, and is very much worth your
time (http://bkaprt.com/rdpp/06-08/). If you’re hoping to learn
about the various parts of the responsive images specification,
two articles in particular were invaluable to me: namely, Eric
Portis’ “Responsive Images in Practice” (http://bkaprt.com/
rdpp/06-09/), and Yoav Weiss’ “Native Responsive Images”
(http://bkaprt.com/rdpp/06-10/).

And finally, Scott Jehl’s wonderful Responsible Responsive
Design covers picture, srcset, and sizes in great detail, but

http://bkaprt.com/rdpp/06-01/
http://bkaprt.com/rdpp/06-02/
http://bkaprt.com/rdpp/06-03/
http://bkaprt.com/rdpp/06-03/
http://bkaprt.com/rdpp/01-16/
http://bkaprt.com/rdpp/02-23/
http://bkaprt.com/rdpp/06-04/
http://bkaprt.com/rdpp/06-04/
http://bkaprt.com/rdpp/06-05/
http://bkaprt.com/rdpp/06-06/
http://bkaprt.com/rdpp/06-06/
http://bkaprt.com/rdpp/06-07/
http://bkaprt.com/rdpp/06-07/
http://bkaprt.com/rdpp/06-08/
http://bkaprt.com/rdpp/06-09/
http://bkaprt.com/rdpp/06-09/
http://bkaprt.com/rdpp/06-10/

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES150

also discusses why they’re so critical from a performance stand-
point (http://bkaprt.com/rdpp/06-11/).

More Layout Modules

Given the short stature of this little book, there wasn’t space
enough to cover all the wonderful layout techniques available to
us. The flexible box module, or “flexbox,” was briefly covered
in Chapter 5. To learn more, I recommend this brief, interactive
tour (http://bkaprt.com/rdpp/06-12/), this overview from the
Mozilla Developer Network (http://bkaprt.com/rdpp/06-13/),
or this comprehensive reference at CSS Tricks (http://bkaprt.
com/rdpp/06-14/).

As I mentioned in Chapter 5, flexbox is great for detail work,
but less than ideal for page layouts. Thankfully, there’s an entire
CSS module for creating grid layouts called, ahem, CSS Grid
Layout. The module’s specification is dense, but worth reading
(http://bkaprt.com/rdpp/06-15/). If you’re as interested in CSS
Grid Layout as I am, I strongly recommend Rachel Andrews’
resources (http://bkaprt.com/rdpp/06-16/; http://bkaprt.com/
rdpp/06-17/) on the topic, as well as her stellar collection of CSS
Grid Layout examples (http://bkaprt.com/rdpp/06-18/).

General Interest

If you’re interested to learn more about Pius “Mau” Piailug,
who sailed oceans using only the sky, I recommend this page
on his 1976 journey to Tahiti (http://bkaprt.com/rdpp/06-19/), or
this Smithsonian profile of traditional navigators (http://bkaprt.
com/rdpp/06-20/). Wikipedia also has a great overview of his
star compass and how it works (http://bkaprt.com/rdpp/06-21/).

If you’d like to read more about Pando, the beautiful tree that
opened this book, the web is filled with wonderful resources.
Start with Atlas Obscura (http://bkaprt.com/rdpp/06-22/), and
learn about Pando’s slightly troubled future due to climate
change-induced drought, disease, and pests at http://bkaprt.
com/rdpp/06-23/.

http://bkaprt.com/rdpp/06-11/
http://bkaprt.com/rdpp/06-12/
http://bkaprt.com/rdpp/06-13/
http://bkaprt.com/rdpp/06-14/
http://bkaprt.com/rdpp/06-14/
http://bkaprt.com/rdpp/06-15/
http://bkaprt.com/rdpp/06-16/
http://bkaprt.com/rdpp/06-17/
http://bkaprt.com/rdpp/06-17/
http://bkaprt.com/rdpp/06-18/
http://bkaprt.com/rdpp/06-19/
http://bkaprt.com/rdpp/06-20/
http://bkaprt.com/rdpp/06-20/
http://bkaprt.com/rdpp/06-21/
http://bkaprt.com/rdpp/06-22/
http://bkaprt.com/rdpp/06-23/
http://bkaprt.com/rdpp/06-23/

151ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS
As always, my sincere thanks to A Book Apart. Katel LeDû, Jef-
frey Zeldman, and Jason Santa Maria are among the finest, most
inspiring people I know. They’ve built a wonderful publishing
house, and I’m honored this book is a small part of it.

I was excited about writing this book, sure: but I was ecstatic
when Erin Kissane agreed to edit it. In addition to her work
at OpenNews, Erin is one of the finest writers and editors I
know. She’s uniquely gifted at untangling even the most knotted
phrase, and responds to the dumbest authorial questions with
grace, patience, and wit. If you enjoyed this book, you’re likely
seeing her hand at work.

Many people know Mandy Brown for her writing, her strik-
ing designs, or her years of working with product companies
and publishers. Fewer people know Mandy was responsible
for helping responsive design find its audience. After hearing
my first presentation on responsive design, she invited me to
write the original article for A List Apart; a year or so later,
she edited and published Responsive Web Design, my first solo
book. That’s why I’m beyond thrilled she agreed to write the
foreword for this one.

I’ve had the honor of working with many technical editors,
but Anna Debenham is among the finest. Her feedback was in
equal parts brilliant, challenging, and insightful. The book is
much, much better for her tireless work.

Livia Labate, Scott Jehl, Mat Marquis, and Karen McGrane
provided feedback on early drafts. I’m indebted to each of them
for their time, their feedback, and their friendship.

I first learned of Pando from a talk by Matthew Battles at
a mini-conference organized by Deb Chachra. I’m indebted
to both.

And finally, but most importantly, my most heartfelt thanks
to my wife Elizabeth for her patience, support, and love. This
book, and everything else, is for her.

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES152

REFERENCES
Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Chapter 1

01-01	 https://commons.wikimedia.org/wiki/File:FallPando02.jpg

01-02	 http://www.nps.gov/brca/naturescience/quakingaspen.htm

01-03	 http://www.jstor.org/stable/1312652

01-04	 http://trentwalton.com/2012/02/02/redefined/

01-05	 http://www.fieldmuseum.org/

01-06	 http://www.audubon.org/

01-07	 http://cooking.nytimes.com/guides/how-to-make-pie-crust

01-08	 http://laphamsquarterly.org/

01-09	 http://www.microsoft.com/

01-10	 https://www.virginamerica.com/

01-11	 http://www.adobe.com/

01-12	 https://www.gov.uk/

01-13	 https://playbook.cio.gov/

01-14	 http://www.google.com/trends/2014/

01-15	 http://abookapart.com/products/responsive-web-design

01-16	 http://responsivewebdesign.com/podcast/capital-one-part-two.html

01-17	 http://responsivewebdesign.com/podcast/virgin-america.html

01-18	 http://ushahidi.github.io/platform-pattern-library/

01-19	 http://ux.mailchimp.com/patterns

01-20	 http://www.starbucks.com/static/reference/styleguide/

01-21	 http://patterns.alistapart.com/

01-22	 https://commons.wikimedia.org/wiki/File:HMS_Dauntless_D33.jpg

01-23	 http://us5.campaign-archive2.com/?u=7e093c5cf4&id=ead8a72012&e=
ecb25a3f93

01-24	 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white_paper_c11-520862.html

01-25	 http://www.comscore.com/Insights/Blog/Is-Mobile-Bringing-About-the-
Death-of-the-PC-Not-Exactly

01-26	 http://www.pcmag.com/article2/0,2817,2375047,00.asp

01-27	 http://ben-evans.com/benedictevans/2014/4/25/ipad-growth

01-28	 http://recode.net/2014/07/30/exclusive-interview-best-buy-ceo-says-
tablet-sales-are-crashing-sees-hope-for-pcs/

https://commons.wikimedia.org/wiki/File:FallPando02.jpg
http://www.nps.gov/brca/naturescience/quakingaspen.htm
http://www.jstor.org/stable/1312652
http://trentwalton.com/2012/02/02/redefined/
http://www.fieldmuseum.org/
http://www.audubon.org/
http://cooking.nytimes.com/guides/how-to-make-pie-crust
http://laphamsquarterly.org/
http://www.microsoft.com/
https://www.virginamerica.com/
http://www.adobe.com/
https://www.gov.uk/
https://playbook.cio.gov/
http://www.google.com/trends/2014/
http://abookapart.com/products/responsive-web-design
http://responsivewebdesign.com/podcast/capital-one-part-two.html
http://responsivewebdesign.com/podcast/virgin-america.html
http://ushahidi.github.io/platform-pattern-library/
http://ux.mailchimp.com/patterns
http://www.starbucks.com/static/reference/styleguide/
http://patterns.alistapart.com/
https://commons.wikimedia.org/wiki/File:HMS_Dauntless_D33.jpg
http://us5.campaign-archive2.com/?u=7e093c5cf4&id=ead8a72012&e=ecb25a3f93
http://us5.campaign-archive2.com/?u=7e093c5cf4&id=ead8a72012&e=ecb25a3f93
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.comscore.com/Insights/Blog/Is-Mobile-Bringing-About-the-Death-of-the-PC-Not-Exactly
http://www.comscore.com/Insights/Blog/Is-Mobile-Bringing-About-the-Death-of-the-PC-Not-Exactly
http://www.pcmag.com/article2/0,2817,2375047,00.asp
http://ben-evans.com/benedictevans/2014/4/25/ipad-growth
http://recode.net/2014/07/30/exclusive-interview-best-buy-ceo-says--tablet-sales-are-crashing-sees-hope-for-pcs/
http://recode.net/2014/07/30/exclusive-interview-best-buy-ceo-says--tablet-sales-are-crashing-sees-hope-for-pcs/

153REFERENCES

01-29	 http://www.reuters.com/article/2014/11/14/us-google-glass-insight-
idUSKCN0IY18E20141114

01-30	 https://play.google.com/store/apps/details?id=com.appfour.wearbrowser

01-31	 https://www.youtube.com/watch?v=sGo08-SP_Ww

01-32	 http://www.digitaltrends.com/computing/windows-8-1-preview-review/

01-33	 http://www.ofcom.org.uk/static/cmr-10/UKCM-4.13.html

01-34	 https://www.flickr.com/photos/anna_debenham/19700844223

01-35	 http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-
november-2014.pdf

01-36	 https://www.flickr.com/photos/ericsson_images/15626948657/in/
set-72157649326666221	

Chapter 2

02-01	 http://www.nlm.nih.gov/exhibition/avoyagetohealth/exhibition-legacy.
html

02-02	 http://happycog.com/

02-03	 http://responsivenews.co.uk/post/18948466399/cutting-the-mustard

02-04	 http://responsivenews.co.uk/post/50028612882/responsive-news-testing

02-05	 https://github.com/filamentgroup/Overthrow/

02-06	 http://www.lukew.com/ff/entry.asp?1514

02-07	 https://web.archive.org/web/20130819090807/http://stephanierieger.
com/a-plea-for-progressive-enhancement

02-08	 https://github.com/filamentgroup/Ajax-Include-Pattern/

02-09	 http://www.filamentgroup.com/lab/responsive-design-approach-for-
navigation.html

02-10	 https://developer.mozilla.org/en-US/Apps/Design/UI_layout_basics/
Responsive_Navigation_Patterns

02-11	 https://www.quora.com/Who-started-the-trend-of-using-the-hamburger-
icon-%E2%98%B0-as-a-menu-button

02-12	 http://www.bbc.com/news/magazine-31602745

02-13	 https://raygun.io/blog/2014/07/making-svg-html-burger-button/

02-14	 http://sarasoueidan.com/blog/navicon-transformicons/

02-15	 http://time.com

02-16	 http://exisweb.net/mobile-menu-abtest

02-17	 http://thenextweb.com/dd/2014/04/08/ux-designers-side-drawer-
navigation-costing-half-user-engagement/

02-18	 http://blog.booking.com/hamburger-menu.html

02-19	 http://blog.manbolo.com/2014/06/30/apple-on-hamburger-menus

02-20	 http://www.lukew.com/ff/entry.asp?933

http://www.reuters.com/article/2014/11/14/us-google-glass-insight-idUSKCN0IY18E20141114
http://www.reuters.com/article/2014/11/14/us-google-glass-insight-idUSKCN0IY18E20141114
https://play.google.com/store/apps/details?id=com.appfour.wearbrowser
https://www.youtube.com/watch?v=sGo08-SP_Ww
http://www.digitaltrends.com/computing/windows-8-1-preview-review/
http://www.ofcom.org.uk/static/cmr-10/UKCM-4.13.html
https://www.flickr.com/photos/anna_debenham/19700844223
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report--november-2014.pdf
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report--november-2014.pdf
https://www.flickr.com/photos/ericsson_images/15626948657/in/-set-72157649326666221
https://www.flickr.com/photos/ericsson_images/15626948657/in/-set-72157649326666221
http://www.nlm.nih.gov/exhibition/avoyagetohealth/exhibition-legacy.html
http://www.nlm.nih.gov/exhibition/avoyagetohealth/exhibition-legacy.html
http://happycog.com/
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://responsivenews.co.uk/post/50028612882/responsive-news-testing
https://github.com/filamentgroup/Overthrow/
http://www.lukew.com/ff/entry.asp?1514
https://web.archive.org/web/20130819090807/http://stephanierieger.com/a-plea-for-progressive-enhancement
https://web.archive.org/web/20130819090807/http://stephanierieger.com/a-plea-for-progressive-enhancement
https://github.com/filamentgroup/Ajax-Include-Pattern/
http://www.filamentgroup.com/lab/responsive-design-approach-for--navigation.html
http://www.filamentgroup.com/lab/responsive-design-approach-for--navigation.html
https://developer.mozilla.org/en-US/Apps/Design/UI_layout_basics/Responsive_Navigation_Patterns
https://developer.mozilla.org/en-US/Apps/Design/UI_layout_basics/Responsive_Navigation_Patterns
https://www.quora.com/Who-started-the-trend-of-using-the-hamburger-icon-%E2%98%B0-as-a-menu-button
https://www.quora.com/Who-started-the-trend-of-using-the-hamburger-icon-%E2%98%B0-as-a-menu-button
http://www.bbc.com/news/magazine-31602745
https://raygun.io/blog/2014/07/making-svg-html-burger-button/
http://sarasoueidan.com/blog/navicon-transformicons/
http://time.com
http://exisweb.net/mobile-menu-abtest
http://thenextweb.com/dd/2014/04/08/ux-designers-side-drawer--navigation-costing-half-user-engagement/
http://thenextweb.com/dd/2014/04/08/ux-designers-side-drawer--navigation-costing-half-user-engagement/
http://blog.booking.com/hamburger-menu.html
http://blog.manbolo.com/2014/06/30/apple-on-hamburger-menus
http://www.lukew.com/ff/entry.asp?933

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES154

02-21	 http://www.bbc.com/news

02-22	 http://www.theguardian.com/help/insideguardian/2014/jul/11/-sp-
navigating-the-guardian

02-23	 http://responsivewebdesign.com/podcast/virgin-america.html

02-24	 https://the-pastry-box-project.net/dan-mall/2012-september-12

02-25	 http://blog.mailchimp.com/redesigning-mailchimps-app-navigation/

02-26	 https://www.filamentgroup.com/

02-27	 http://frankchimero.com/blog/

Chapter 3

03-01	 http://the.hitchcock.zone/wiki/Alfred_Hitchcock_and_Fran%C3%A7ois_
Truffaut_%28Aug/1962%29_-_Part_2

03-02	 http://clagnut.com/blog/268/

03-03	 http://www.bbc.com/news/business-33436021

03-04	 http://unstoppablerobotninja.com/entry/hand-over-the-ring/

03-05	 http://thisismadebyhand.com/

03-06	 http://alistapart.com/article/creating-intrinsic-ratios-for-video

03-07	 http://www.w3.org/TR/css3-box/#padding1

03-08	 http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-
answer-neither/

03-09	 http://virb.com/

03-10	 http://vox.com/

03-11	 http://httparchive.org/interesting.php?a=All&l=Jul%201%202015

03-12	 http://googlesystem.blogspot.com/2010/07/googles-stats-about-web.html

03-13	 http://blog.cloudfour.com/how-apple-com-will-serve-retina-images-to-
new-ipads/

03-14	 https://w3c.github.io/netinfo/

03-15	 https://youtube.com/watch?v=d5_6yHixpsQ

03-16	 http://www.gq.com/

03-17	 http://digiday.com/publishers/gq-com-cut-page-load-time-80-percent/

03-18	 http://ricg.io/

03-19	 https://html.spec.whatwg.org/multipage/embedded-content.html#
attr-img-srcset

03-20	 https://html.spec.whatwg.org/multipage/embedded-content.html#
introduction-3:viewport-based-selection-2

03-21	 https://status.modern.ie/imgsrcset

03-22	 https://github.com/scottjehl/picturefill

http://www.bbc.com/news
http://www.theguardian.com/help/insideguardian/2014/jul/11/-sp--navigating-the-guardian
http://www.theguardian.com/help/insideguardian/2014/jul/11/-sp--navigating-the-guardian
http://responsivewebdesign.com/podcast/virgin-america.html
https://the-pastry-box-project.net/dan-mall/2012-september-12
http://blog.mailchimp.com/redesigning-mailchimps-app-navigation/
https://www.filamentgroup.com/
http://frankchimero.com/blog/
http://the.hitchcock.zone/wiki/Alfred_Hitchcock_and_Fran%C3%A7ois_Truffaut_%28Aug/1962%29_-_Part_2
http://the.hitchcock.zone/wiki/Alfred_Hitchcock_and_Fran%C3%A7ois_Truffaut_%28Aug/1962%29_-_Part_2
http://clagnut.com/blog/268/
http://www.bbc.com/news/business-33436021
http://unstoppablerobotninja.com/entry/hand-over-the-ring/
http://thisismadebyhand.com/
http://alistapart.com/article/creating-intrinsic-ratios-for-video
http://www.w3.org/TR/css3-box/#padding1
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://virb.com/
http://vox.com/
http://httparchive.org/interesting.php?a=All&l=Jul%201%202015
http://googlesystem.blogspot.com/2010/07/googles-stats-about-web.html
http://blog.cloudfour.com/how-apple-com-will-serve-retina-images-to-new-ipads/
http://blog.cloudfour.com/how-apple-com-will-serve-retina-images-to-new-ipads/
https://w3c.github.io/netinfo/
https://youtube.com/watch?v=d5_6yHixpsQ
http://www.gq.com/
http://digiday.com/publishers/gq-com-cut-page-load-time-80-percent/
http://ricg.io/
https://html.spec.whatwg.org/multipage/embedded-content.html#-attr-img-srcset
https://html.spec.whatwg.org/multipage/embedded-content.html#-attr-img-srcset
https://html.spec.whatwg.org/multipage/embedded-content.html#-introduction-3:viewport-based-selection-2
https://html.spec.whatwg.org/multipage/embedded-content.html#-introduction-3:viewport-based-selection-2
http://
https://status.modern.ie/imgsrcset
https://github.com/scottjehl/picturefill

155REFERENCES

03-23	 http://www.vox.com/2014/12/29/7458807/paul-krugman-economist

03-24	 http://engineering.columbia.edu/model-created-map-
energy-use-nyc-buildings

03-25	 http://www.lars-mueller-publishers.com/en/programme-entwerfen

03-26	 http://needmoredesigns.com/blog/early-responsive-design/

03-27	 https://flic.kr/p/s7maT2

03-28	 https://github.com/adamdbradley/focal-point

03-29	 https://www.shopify.com/

Chapter 4

04-01	 http://depts.washington.edu/chinaciv/graph/tcommain.htm

04-02	 http://www.teleactivities.com/advertising-history/

04-03	 http://blogs.ubc.ca/etec540sept10/2010/11/29/the-evolution-of-
advertising-from-papyrus-to-youtube/

04-04	 http://espressocoffee.quora.com/Coffee-timeline-A-literary-record

04-05	 http://www.web-books.com/Classics/ON/B0/B701/15MB701.html

04-06	 https://commons.wikimedia.org/wiki/File:Times_1788.12.04.jpg

04-07	 https://www.flickr.com/photos/nesster/5511185739/

04-08	 https://www.flickr.com/photos/42072348@N00/3049739879/

04-09	 https://www.flickr.com/photos/91591049@N00/16587189580/

04-10	 https://www.flickr.com/photos/nesster/14959218130/

04-11	 https://www.flickr.com/photos/nesster/4822903313/

04-12	 http://www.iab.net/guidelines/508676/508767/displayguidelines

04-13	 http://www.iab.net/guidelines/508676/508767/mobileguidelines

04-14	 https://github.com/filamentgroup/AppendAround

04-15	 http://product.voxmedia.com/2014/12/17/7405131/algorithmic-design-
how-vox-picks-a-winning-layout-out-of-thousands

04-16	 http://markboulton.co.uk/journal/responsive-advertising

04-17	 http://rogerblack.com/blog/post/the_holy_grail_part_i

04-18	 http://rogerblack.com/blog/post/the_holy_grail_part_2

04-19	 https://www.thinkwithgoogle.com/research-studies/the-new-
multi-screen-world-study.html

04-20	 http://responsivewebdesign.com/podcast/vox.html

04-21	 http://advertising.theguardian.com/gallery/

04-22	 http://next.theguardian.com/blog/responsive-takeover/

04-23	 http://htmlads.monotype.com/

04-24	 https://support.google.com/adsense/answer/3543893

http://www.vox.com/2014/12/29/7458807/paul-krugman-economist
http://engineering.columbia.edu/model-created-map--energy-use-nyc-buildings
http://engineering.columbia.edu/model-created-map--energy-use-nyc-buildings
http://www.lars-mueller-publishers.com/en/programme-entwerfen
http://needmoredesigns.com/blog/early-responsive-design/
https://flic.kr/p/s7maT2
https://github.com/adamdbradley/focal-point
https://www.shopify.com/
http://depts.washington.edu/chinaciv/graph/tcommain.htm
http://www.teleactivities.com/advertising-history/
http://blogs.ubc.ca/etec540sept10/2010/11/29/the-evolution-of--advertising-from-papyrus-to-youtube/
http://blogs.ubc.ca/etec540sept10/2010/11/29/the-evolution-of--advertising-from-papyrus-to-youtube/
http://espressocoffee.quora.com/Coffee-timeline-A-literary-record
http://www.web-books.com/Classics/ON/B0/B701/15MB701.html
https://commons.wikimedia.org/wiki/File:Times_1788.12.04.jpg
https://www.flickr.com/photos/nesster/5511185739/
mailto:https://www.flickr.com/photos/42072348@N00/3049739879/
mailto:https://www.flickr.com/photos/91591049@N00/16587189580/
https://www.flickr.com/photos/nesster/14959218130/
https://www.flickr.com/photos/nesster/4822903313/
http://www.iab.net/guidelines/508676/508767/displayguidelines
http://www.iab.net/guidelines/508676/508767/mobileguidelines
https://github.com/filamentgroup/AppendAround
http://product.voxmedia.com/2014/12/17/7405131/algorithmic-design-how-vox-picks-a-winning-layout-out-of-thousands
http://product.voxmedia.com/2014/12/17/7405131/algorithmic-design-how-vox-picks-a-winning-layout-out-of-thousands
http://markboulton.co.uk/journal/responsive-advertising
http://rogerblack.com/blog/post/the_holy_grail_part_i
http://rogerblack.com/blog/post/the_holy_grail_part_2
https://www.thinkwithgoogle.com/research-studies/the-new--multi-screen-world-study.html
https://www.thinkwithgoogle.com/research-studies/the-new--multi-screen-world-study.html
http://responsivewebdesign.com/podcast/vox.html
http://advertising.theguardian.com/gallery/
http://next.theguardian.com/blog/responsive-takeover/
http://htmlads.monotype.com/
https://support.google.com/adsense/answer/3543893

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES156

04-25	 http://www.iab.net/iablog/2014/03/viewability-has-arrived-what-you-
need-to-know-to-see-through-this-sea-change.html

04-26	 http://www.thedrum.com/news/2014/02/25/mwc-advertisers-lag-
behind-publishers-creating-responsive-design-experiences-says

Chapter 5

05-01	 http://trentwalton.com/2012/02/02/redefined/

05-02	 http://responsivewebdesign.com/podcast/virgin-america.html

05-03	 http://upstatement.com/blog/2012/01/how-to-approach-a-responsive-
design/

05-04	 http://getbootstrap.com/

05-05	 http://foundation.zurb.com/

05-06	 http://whitney.org/

05-07	 http://www.experimentaljetset.nl/archive/whitney-museum-identity

05-08	 https://archive.org/details/LittleNemo1905-1914ByWinsorMccay

05-09	 https://www.youtube.com/watch?v=I-9FIFDHjLg

05-10	 https://www.youtube.com/watch?v=1uLWbuButIE

05-11	 https://www.youtube.com/watch?v=lmVra1mW7LU

05-12	 https://www.youtube.com/watch?v=ws5kGs_J-CM

05-13	 https://vimeo.com/93206523

05-14	 http://the12principles.tumblr.com/

05-15	 http://www.frankanollie.com/PhysicalAnimation.html

05-16	 http://product.voxmedia.com/2014/12/17/7405131/algorithmic-design-
how-vox-picks-a-winning-layout-out-of-thousands

05-17	 http://www.markboulton.co.uk/journal/anewcanon

05-18	 http://owltastic.com/

05-19	 http://tattly.com/products/burger

05-20	 http://www.fieldmuseum.org/

05-21	 https://developer.mozilla.org/en-US/docs/Web/CSS/flex

05-22	 http://www.bondartscience.com

05-23	 http://www.sbnation.com/a/march-madness-2014

05-24	 http://alistapart.com/article/content-out-layout

05-25	 http://www.theguardian.com/film/ng-interactive/2015/feb/20/what-it-
really-means-to-win-the-oscars-best-director

05-26	 http://responsivewebdesign.com/podcast/

05-27	 https://developer.chrome.com/home/platform-pillar

05-28	 http://convergese.com/

05-29	 http://www.theguardian.com/

http://www.iab.net/iablog/2014/03/viewability-has-arrived-what-you-need-to-know-to-see-through-this-sea-change.html
http://www.iab.net/iablog/2014/03/viewability-has-arrived-what-you-need-to-know-to-see-through-this-sea-change.html
http://www.thedrum.com/news/2014/02/25/mwc-advertisers-lag--behind-publishers-creating-responsive-design-experiences-says
http://www.thedrum.com/news/2014/02/25/mwc-advertisers-lag--behind-publishers-creating-responsive-design-experiences-says
http://trentwalton.com/2012/02/02/redefined/
http://responsivewebdesign.com/podcast/virgin-america.html
http://upstatement.com/blog/2012/01/how-to-approach-a-responsive-design/
http://upstatement.com/blog/2012/01/how-to-approach-a-responsive-design/
http://getbootstrap.com/
http://foundation.zurb.com/
http://whitney.org/
http://www.experimentaljetset.nl/archive/whitney-museum-identity
https://archive.org/details/LittleNemo1905-1914ByWinsorMccay
https://www.youtube.com/watch?v=I-9FIFDHjLg
https://www.youtube.com/watch?v=1uLWbuButIE
https://www.youtube.com/watch?v=lmVra1mW7LU
https://www.youtube.com/watch?v=ws5kGs_J-CM
https://vimeo.com/93206523
http://the12principles.tumblr.com/
http://www.frankanollie.com/PhysicalAnimation.html
http://product.voxmedia.com/2014/12/17/7405131/algorithmic-design-how-vox-picks-a-winning-layout-out-of-thousands
http://product.voxmedia.com/2014/12/17/7405131/algorithmic-design-how-vox-picks-a-winning-layout-out-of-thousands
http://www.markboulton.co.uk/journal/anewcanon
http://owltastic.com/
http://tattly.com/products/burger
http://www.fieldmuseum.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/flex
http://www.bondartscience.com
http://www.sbnation.com/a/march-madness-2014
http://alistapart.com/article/content-out-layout
http://www.theguardian.com/film/ng-interactive/2015/feb/20/what-it-really-means-to-win-the-oscars-best-director
http://www.theguardian.com/film/ng-interactive/2015/feb/20/what-it-really-means-to-win-the-oscars-best-director
http://responsivewebdesign.com/podcast/
https://developer.chrome.com/home/platform-pillar
http://convergese.com/
http://www.theguardian.com/

157REFERENCES

05-30	 http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/

05-31	 https://www.flickr.com/photos/cjmartin/8916609941/

Resources

06-01	 http://responsivewebdesign.com/podcast/marriott.html

06-02	 http://responsivewebdesign.com/podcast/code-for-america.html

06-03	 http://responsivewebdesign.com/podcast/capital-one.html

06-04	 http://responsivewebdesign.com/podcast/ushahidi.html

06-05	 http://alistapart.com/article/creating-style-guides

06-06	 http://maban.co.uk/projects/front-end-style-guides/

06-07	 http://styleguides.io/podcast/index.html

06-08	 http://alistapart.com/article/responsive-images-how-they-almost-worked-
and-what-we-need

06-09	 http://alistapart.com/article/responsive-images-in-practice

06-10	 https://dev.opera.com/articles/native-responsive-images/

06-11	 http://www.abookapart.com/products/responsible-responsive-design

06-12	 http://www.flexboxin5.com/

06-13	 https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Flexible_
boxes

06-14	 https://css-tricks.com/snippets/css/a-guide-to-flexbox/

06-15	 http://www.w3.org/TR/css3-grid-layout/

06-16	 http://rachelandrew.co.uk/presentations/css-grid

06-17	 http://rachelandrew.co.uk/archives/2014/06/27/css-grid-layout-getting-to-
grips-with-the-chrome-implementation/

06-18	 http://gridbyexample.com/

06-19	 http://pvs.kcc.hawaii.edu/holokai/1976/ben_finney.html

06-20	 http://www.smithsonianmag.com/smithsonian-institution/how-voyage-
kon-tiki-misled-world-about-navigating-pacific-180952478/?no-ist

06-21	 http://en.wikipedia.org/wiki/Mau_Piailug

06-22	 http://www.atlasobscura.com/places/pando-the-trembling-giant

06-23	 http://www.smithsonianmag.com/science-nature/whats-killing-the-aspen-
93130832/?all

http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/
https://www.flickr.com/photos/cjmartin/8916609941/
http://responsivewebdesign.com/podcast/marriott.html
http://responsivewebdesign.com/podcast/code-for-america.html
http://responsivewebdesign.com/podcast/capital-one.html
http://responsivewebdesign.com/podcast/ushahidi.html
http://alistapart.com/article/creating-style-guides
http://maban.co.uk/projects/front-end-style-guides/
http://styleguides.io/podcast/index.html
http://alistapart.com/article/responsive-images-how-they-almost-worked-and-what-we-need
http://alistapart.com/article/responsive-images-how-they-almost-worked-and-what-we-need
http://alistapart.com/article/responsive-images-in-practice
https://dev.opera.com/articles/native-responsive-images/
http://www.abookapart.com/products/responsible-responsive-design
http://www.flexboxin5.com/
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Flexible_boxes
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Flexible_boxes
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://www.w3.org/TR/css3-grid-layout/
http://rachelandrew.co.uk/presentations/css-grid
http://rachelandrew.co.uk/archives/2014/06/27/css-grid-layout-getting-to-grips-with-the-chrome-implementation/
http://rachelandrew.co.uk/archives/2014/06/27/css-grid-layout-getting-to-grips-with-the-chrome-implementation/
http://gridbyexample.com/
http://pvs.kcc.hawaii.edu/holokai/1976/ben_finney.html
http://www.smithsonianmag.com/smithsonian-institution/how-voyage-kon-tiki-misled-world-about-navigating-pacific-180952478/?no-ist
http://www.smithsonianmag.com/smithsonian-institution/how-voyage-kon-tiki-misled-world-about-navigating-pacific-180952478/?no-ist
http://en.wikipedia.org/wiki/Mau_Piailug
http://www.atlasobscura.com/places/pando-the-trembling-giant
http://www.smithsonianmag.com/science-nature/whats-killing-the-aspen-93130832/?all
http://www.smithsonianmag.com/science-nature/whats-killing-the-aspen-93130832/?all

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES158

A

Adobe 5
AdSense 111
AIDS.gov 5
Ajax-Include pattern 32, 99
A List Apart 10
AppendAround library 106
Apple 42
Archibald, Jake 74, 143
aspect ratio 62

B

Bale, Peter 112
BBC News 21, 45, 58
Beamly 41
Booking.com 41
Bootstrap 115
Boston Globe 31, 100, 114
Bottita, Tito 114
Boulton, Mark 108, 127
Bradley, Adam 83
breakpoint-sensitive ads 104
Brigleb, Raymond 83
Brundrett, Trei 109

C

Capital One 9
Childs, Scott 9
Chimero, Frank 55, 143
CNN International Digital 112
comps 52
conditional comments 68
conditional loading 99
conditionally loaded menus 29
CSS-based resizing 72

D

Davis, Marc 124
Disney animation studio 122
Disney.com 42
document.write() statements 102

E

Editorially 136
element hierarchy 129
embedded video 60
Ericsson 15

F

fallback styles 68, 143
Ferreira, Michel 41
Field Museum 4, 131
Filament Group 26, 32, 34, 106
Fisher, Meagan 130
Fishlake National Forest 1
FiveThirtyEight 29
flexbox 131, 142
flexible backgrounds 67
fluid videos 59
Ford, Nathan 135
Foster, James 40
Foundation 115
frameworks 115

G

Gerstner, Karl 83
Google 6, 111
GOV.UK 5, 146
Grigsby, Jason 72
Guardian 33, 47, 110, 133

INDEX

159INDEX

H

hamburger icons 34
Happy Cog 18
Holgado, Federico 11
HotWired 94

I

information density 133
input methods 147
Interactive Advertising Bureau 93
iOS 42
Irish, Paul 68

J

JavaScript, testing for 20
Johnston, Ollie 125

K

Koblentz, Thierry 61

L

Lapham’s Quarterly 4
Little Nemo in Slumberland 123
Lodigiani, Cento 126
low bandwidth 74

M

Made By Hand 60
MailChimp 10
Mall, Dan 52
McCay, Winsor 122
McGrane, Karen 133
Microsoft 5, 14
Monotype 111
Mozilla 34
MSNBC 26
Mulholland, Chris 47

N

National Audubon Society 4
navigation drawers 42
Network Information API 74
New York Times 4

O

Ofcom 15
off-canvas menus 28
O’Reilly 94
overflow (CSS property) 25
Overthrow.js library 26

P

Pando 2
Paravel 3
pattern libraries 10
percentage-based padding 64
Photoshop 52
Piailug, Pius “Mau” 16
progressive reveal 46
Publick Adviser 92

R

Responsive Issues Community Group
74

Rutter, Richard 57

S

SB Nation 132
Shopify 85
Sketch 52
Smashing Magazine 95
srcset attribute 75
Starbucks 10
star compass 16
Stern, Mike 42
Stewart, Joe 9, 51, 114
Stocks, Elliott Jay 95
style guides 10

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES160

T

Tattly 129
Tesla 146
Thomas, Frank 125
Time magazine 35

U

Upstatement 114
US Digital Service 5
Ushahidi 10

V

Virb 69
Virgin America 5, 9, 51, 114
Vox 71, 106, 127

W

Walmart.ca 28
Walton, Trent 3, 113
Whitney Museum 119
Windows 8.1 14
Work & Co 51
wrist-based browsers 13
Wroblewski, Luke 44

X

Xerox Star 35

Y

Year in Search 2014 6
Young, Jesse 106

ABOUT A BOOK APART
We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because
working designer-developers can’t afford to waste time.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans, both
by Xavier Dupré. Headlines and cover are set in Titling Gothic
by David Berlow.

This book was printed in the United States
using FSC certified Finch papers.

ABOUT THE AUTHOR
Ethan Marcotte is an independent
designer and author, based in Bos-
ton, Massachusetts. He coined the
term “responsive web design” to
describe a new way of designing for
the ever-changing Web, and is the
author of the definitive book on the
topic: Responsive Web Design. His
design, speaking, and writing has
helped designers and organizations

use the Web’s flexibility to design across mobile, tablet, and
desktop—and whatever might come next.

Over the years, Ethan has been a featured speaker at many
conferences, including An Event Apart, SXSW Interactive, and
Webstock. His clientele has included New York Magazine, the
Sundance Film Festival, The Boston Globe, and People Magazine.

	Chapter 1: Starting Small
	Chapter 2: Navigation
	Chapter 3: Images and Videos
	Chapter 4: Responsive Advertising
	Chapter 5: Designing the Infinite Grid
	Resources
	Acknowledgements
	References
	Index

